Publications by authors named "Anna Amat"

Background: INTEVAL_Spain was a complex workplace intervention to prevent and manage musculoskeletal pain among nursing staff. Process evaluations can be especially useful for complex and multifaceted interventions through identifying the success or failure factors of an intervention to improve the intervention implementation.

Objectives: This study performed a process evaluation of INTEVAL_Spain and aimed to examine whether the intervention was conducted according to the protocol, to investigate the fulfilment of expectations and the satisfaction of workers.

View Article and Find Full Text PDF

The present paper focuses on the characterization of the properties of methanol and water molecules in gas and liquid environments. A force field for methanol-methanol and methanol-water interactions, useful to be applied in Molecular Dynamics (MD) simulations, is proposed. The electrostatic interaction contributions, arising from permanent charge and/or from anisotropic charge distributions originating from permanent electric multipoles (V), different in gas and in liquid phases, are combined with the non electrostatic ones (V), defined by means of Improved Lennard-Jones (ILJ) functions [F.

View Article and Find Full Text PDF

Herein, the synthesis of a new family of squaraines (SQs) and their application in p-type dye-sensitized solar cells (DSSCs) is presented. In particular, two sets of SQs were designed featuring either two or four anchoring carboxylic groups combined with either oxygen or dicyanovinyl central groups. The SQs were characterized by using a joint theoretical, photophysical, and electrochemical approach.

View Article and Find Full Text PDF

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

The photophysical and photochemical properties of alizarin, a fluorescent organic red dye of the family of the anthraquinones, have been theoretically investigated by focusing our attention on its emission properties in relation to an excited-state internal proton transfers from the phenolic hydroxyl group to the carbonyl oxygen. The potential energy curve of the proton transfer in the first excited state has been computed in solvents of different polarity and the emission spectra of both tautomers simulated, including the vibronic effects, using the Franck-Condon approximation. Calculations performed by equilibrating the solvent with the excited-state geometry and electron density using a self-consistent procedure have led to interesting differences with respect to their linear response counterpart.

View Article and Find Full Text PDF

Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV).

View Article and Find Full Text PDF

A facile and fast approach, based on microwave-enhanced Sonogashira coupling, has been employed to obtain in good yields both mono- and, for the first time, disubstituted push-pull Zn(II) porphyrinates bearing a variety of ethynylphenyl moieties at the β-pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β-mono- or disubstituted Zn(II) porphyrinates and meso-disubstituted push-pull Zn(II) porphyrinates. We have obtained evidence that, although the HOMO-LUMO energy gap of the meso-substituted push-pull dyes is lower, so that charge transfer along the push-pull system therein is easier, the β-mono- or disubstituted push-pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs.

View Article and Find Full Text PDF

We report a first principles density functional theory/time-dependent density functional theory (DFT/TDDFT) computational investigation on a prototypical perylene dye anchored to realistic ZnO nanostructures, approaching the size of the ZnO nanowires used in dye-sensitized solar cells devices. DFT calculations were performed on (ZnO)(n) clusters of increasing size, with n up to 222, of 1.3 × 1.

View Article and Find Full Text PDF

Chemistry is central to addressing topics of interest in the cultural heritage field, offering particular insight into the nature and composition of the original materials, the degradation processes that have occurred over the years, and the attendant physical and chemical changes. On the one hand, the chemical characterization of the constituting materials allows researchers to unravel the rich information enclosed in a work of art, providing insight into the manufacturing techniques and revealing aspects of artistic, chronological, historical, and sociocultural significance. On the other hand, despite the recognized contribution of computational chemistry in many branches of materials science, this tool has only recently been applied to cultural heritage, largely because of the inherent complexity of art materials.

View Article and Find Full Text PDF

A DFT-TDDFT investigation on the aluminium complexation of apigenin and luteolin has been carried out. We have focused our attention on these hydroxyflavonoids, which are the main components of weld, one of the earliest natural dyestuff used in art. In particular, weld, upon complexation with Al(iii) forms a highly prized lake which has been widely used in medieval manuscripts and easel paintings for its rich yellow colour and transparency.

View Article and Find Full Text PDF

The absorption and emission properties of the two components of the yellow color extracted from weld (Reseda luteola L.), apigenin and luteolin, have been extensively investigated by means of DFT and TDDFT calculations. Our calculations reproduce the absorption spectra of both flavonoids in good agreement with the experimental data and allow us to assign the transitions giving rise to the main spectral features.

View Article and Find Full Text PDF