High quality label-free imaging of oocytes and early embryos is essential for accurate assessment of their developmental potential, a key element of assisted reproduction procedures. To achieve this goal, we propose full-field optical coherence microscopy (FF-OCM), constructed as a compact module fully integrated with a commercial wide-field fluorescence microscope. Our system achieves optical sectioning in wide-field, high in-plane resolution of 0.
View Article and Find Full Text PDFAssisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development.
View Article and Find Full Text PDFOptical coherence microscopy (OCM) visualizes nuclei in live, unlabeled cells. As most cells are uninucleated, the number of nuclei in embryos may serve as a proxy of the cell number, providing important information on developmental status of the embryo. Importantly, no other non-invasive method currently allows for the cell number count in compacted embryos.
View Article and Find Full Text PDFIn Brief: Optical coherence microscopy non-invasively visualizes metaphase II spindles allowing for quantitative analysis of their volume and shape, which may prove useful in the assessment of the oocyte quality. Using a mouse model, we showed also that analysis of spindle length combined with morphokinetics improves the evaluation of the resulting embryos.
Abstract: The proper development of embryos strongly depends on the quality of oocytes, so the evaluation of oocytes may be a useful initial step in IVF procedures.
Maternal aging has been reported to reduce oocyte quality and, in turn, lower the developmental potential of the resulting embryos. Here, we show that maternally aged oocytes display two strikingly different phenotypes: some have normal morphology, whereas others have significantly shrunk cytoplasm. The latter phenotype usually prevails in aged females.
View Article and Find Full Text PDFAbnormalities that characterize the pathophysiology of type 2 diabetes (T2D) include deficiencies of β-cells and the expansion of α-cells in pancreatic islets, manifested by lower insulin release and glucagon oversecretion. The molecular mechanisms that determine intra-islet interactions between pancreatic α- and β-cells are still not fully understood. The present study showed that stearoyl-coenzyme A (CoA) desaturase 1 (SCD1), an enzyme that is implicated in fatty acid metabolism, serves as a checkpoint in the control of endocrine cell equilibrium in pancreatic islets.
View Article and Find Full Text PDFIn Brief: Optical coherence microscopy is a label-free and non-invasive imaging technique capable of 3D subcellular structure visualization. Here we show that this method allows for quality assessment of immature mouse oocytes based on their chromatin conformation and can be a valuable addition to the toolkit used in assisted reproduction procedures.
Abstract: The success of assisted reproductive technologies, and particularly in vitro maturation, is tightly linked to the quality of oocytes.
Bisphenol A is a monomeric organic compound belonging to phenols. It is widely used in the production of resins, polycarbonates and plastics. Mass production of this compound contributed to its widespread presence in the environment, and thus - in the organisms of animals and humans.
View Article and Find Full Text PDFMouse zygote morphokinetics were measured during interphase, the mitotic period, cytokinesis, and two-cell stage. Sequences of rounder-distorted-rounder shapes were revealed, as were changing patterns of cross section area. A calcium chelator and an actin-disrupting agent inhibited the area changes that occurred between pronuclear envelope breakdown and cytokinesis.
View Article and Find Full Text PDFMaternal aging affects various aspects of oocytes' physiology, including the functionality of their nuclear apparatus and mitochondria. In the present paper, we wished to investigate whether advanced reproductive age impacts oocytes' ability to generate proper Ca2+ oscillations in response to monospermic fertilization. We examined three different mouse strains/crosses: inbred C57BL/6Tar, outbred Tar:SWISS, and hybrid F1 (C57BL/6Tar × CBA/Tar).
View Article and Find Full Text PDFPostovulatory ageing of mammalian oocytes occurs between their ovulation and fertilization and has been shown to decrease their developmental capabilities. Aged oocytes display numerous abnormalities, including altered Ca signalling. Fertilization-induced Ca oscillations are essential for activation of the embryonic development, therefore maintaining proper Ca homeostasis is crucial for the oocyte quality.
View Article and Find Full Text PDFThe authors of the article Ajduk & Duncan 2019 sincerely apologize for specifying the incorrect institutional affiliation for Professor Ali Brivanlou and also the incorrect spelling of Professor Brivanlou's surname in the text of the article.
View Article and Find Full Text PDFIn recent decades we have witnessed unprecedented progress in the field of the developmental biology of mammals. Building on 20 century discoveries, we have managed to increase our understanding of the molecular and cellular mechanisms governing early mammalian embryogenesis and link them to other biological questions, such as stem cells, regeneration, cancer, or tissue and organ formation. Consequently, it has also led to a creation of a completely new branch of reproductive medicine, i.
View Article and Find Full Text PDFPreimplantation embryonic development lays the foundations for the future individual. Fertilization, cleavage, differentiation of the first embryonic cell lineages and implantation of the embryo into the maternal uterus are absolutely critical for proper embryogenesis. Solving unanswered questions as well as creating new ideas and theories constitute the main axis of the basic research, which is driven by the curiosity of scientists and their desire to explore the unknown.
View Article and Find Full Text PDFInt J Dev Biol
January 2020
In recent years, we have witnessed an unprecedented advancement of light microscopy techniques which has allowed us to better understand biological processes occurring during oogenesis and early embryonic development in mammals. In short, two modes of cellular imaging are now available: those involving fluorescent labels and those which are fluorophore-free. Fluorescence microscopy, in its various forms, is used predominantly in research, as it provides detailed information about cellular processes; however, it can involove an increased risk of photodamage.
View Article and Find Full Text PDFIn fully grown ovarian follicles both transcriptionally active (NSN) and inactive (SN) oocytes are present. NSN oocytes have been shown to display lower developmental potential. It is possible that oocytes that have not completed transcription before meiosis resumption accumulate less RNA and proteins required for their further development, including those responsible for regulation of Ca2+ homeostasis.
View Article and Find Full Text PDFThe British Society for Developmental Biology Autumn Meeting, held in Oxford in September 2018, was the third in a series of international workshops which have been focussed on development at the extraembryonic-embryonic interface. This workshop, entitled "Embryonic-Extraembryonic Interactions: from Genetics to Environment" built on the two previous workshops held in 2011 (Leuven, Belgium) and 2015 (Göttingen, Germany). This workshop brought together researchers utilising a diverse range of organisms (including both vertebrate and invertebrate species) and a range of experimental approaches to answer core questions in developmental biology.
View Article and Find Full Text PDFfertilization has become increasingly popular as an infertility treatment. In order to improve efficiency of this procedure, there is a strong need for a refinement of existing embryo assessment methods and development of novel, robust and non-invasive selection protocols. Studies conducted on animal models can be extremely helpful here, as they allow for more extensive research on the potential biomarkers of embryo quality.
View Article and Find Full Text PDFThe correct temporal regulation of mitosis underpins genomic stability because it ensures the alignment of chromosomes on the mitotic spindle that is required for their proper segregation to the two daughter cells. Crucially, sister chromatid separation must be delayed until all the chromosomes have attached to the spindle; this is achieved by the Spindle Assembly Checkpoint (SAC) that inhibits the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase. In many species the first embryonic M-phase is significantly prolonged compared to the subsequent divisions, but the reason behind this has remained unclear.
View Article and Find Full Text PDFImaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers' ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling.
View Article and Find Full Text PDFfertilization (IVF) is one of the most important procedures for treating infertility. As several embryos are usually produced in a single IVF cycle, it is crucial to select only the most viable ones for transfer to the patient. Morphokinetics, i.
View Article and Find Full Text PDFProfessor Andrzej Krzysztof Tarkowski passed away last September (2016) at the age of 83. His findings, have become indispensable tools for immunological, genetic, and oncological studies, as well as for generating transgenic animals which are instrumental for studying gene function in living animals. His work and discoveries provided a tremendous input to the contemporary developmental biology of mammals.
View Article and Find Full Text PDFMol Hum Reprod
October 2016
Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells-blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved.
View Article and Find Full Text PDF