Background: Telemonitoring of symptoms and physiological signs has been suggested as a means of early detection of chronic obstructive pulmonary disease (COPD) exacerbations, with a view to instituting timely treatment. However, algorithms to identify exacerbations result in frequent false-positive results and increased workload. Machine learning, when applied to predictive modelling, can determine patterns of risk factors useful for improving prediction quality.
View Article and Find Full Text PDFObjective: Poorer glycemic control in type 1 diabetes may alter N-glycosylation patterns on circulating glycoproteins, and these alterations may be linked with diabetic kidney disease (DKD). We investigated associations between N-glycans and glycemic control and renal function in type 1 diabetes.
Research Design And Methods: Using serum samples from 818 adults who were considered to have extreme annual loss in estimated glomerular filtration rate (eGFR; i.
Ultra-performance liquid chromatography (UPLC) is the established technology for accurate analysis of IgG Fc N-glycosylation due to its superior sensitivity, resolution, speed, and its capability to provide branch-specific information of glycan species. Correct and cost-efficient preprocessing of chromatographic data is the major prerequisite for subsequent analyses ranging from inference of structural isomers to biomarker discovery and prediction of humoral immune response from characterized changes in glycosylation. The complexity of glycomic chromatograms poses a number of challenges for developing automated data annotation and quantitation algorithms, which frequently necessitated manual or semi-manual approaches to preprocessing, most notably to peak detection and integration.
View Article and Find Full Text PDFIn this study we demonstrate the potential value of Immunoglobulin G (IgG) glycosylation as a novel prognostic biomarker of colorectal cancer (CRC). We analysed plasma IgG glycans in 1229 CRC patients and correlated with survival outcomes. We assessed the predictive value of clinical algorithms and compared this to algorithms that also included glycan predictors.
View Article and Find Full Text PDF