Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2019
Injectable, self-setting calcium phosphate cements (CPCs) are synthetic bone substitutes considered favorable for the repair and regeneration of bone due to their osteocompatibility and unique handling properties. However, their clinical applicability can be compromised due to insufficient cohesion upon injection into the body coupled with poor degradation rates that restricts new bone formation. Consequently, carboxymethyl cellulose (CMC) was incorporated into CPC formulations to improve their cohesion and injectability while poly ( -lactic-co-glycolic acid) (PLGA) porogens were added to introduce macroporosity and improve their biodegradation rate.
View Article and Find Full Text PDF