Publications by authors named "Ann-Kristin Kollas"

Isoprenoids are synthesised either through the classical, mevalonate pathway, or the alternative, non-mevalonate, 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The latter is found in many microbial pathogens and proceeds via (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a potent activator of human Vgamma9/Vdelta2 T cells. Listeria monocytogenes is the only pathogenic bacterium known to contain both pathways concurrently.

View Article and Find Full Text PDF

Human Vgamma9/Vdelta2 T cells play a crucial role in the immune response to microbial pathogens, yet their unconventional reactivity towards non-peptide antigens has been enigmatic until recently. The break-through in identification of the specific activator was only possible due to recent success in a seemingly remote field: the elucidation of the reaction steps of the newly discovered 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis that is utilised by many pathogenic bacteria. Unexpectedly, the intermediate of the MEP pathway, (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate) (HMB-PP), turned out to be by far the most potent Vgamma9/Vdelta2 T cell activator known, with an EC(50) of 0.

View Article and Find Full Text PDF

Recombinant LytB protein from the thermophilic eubacterium Aquifex aeolicus produced in Escherichia coli was purified to apparent homogeneity. The purified LytB protein catalyzed the reduction of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) in a defined in vitro system. The reaction products were identified as isopentenyl diphosphate and dimethylallyl diphosphate.

View Article and Find Full Text PDF

The gcpE gene product controls one of the terminal steps of isoprenoid biosynthesis via the mevalonate independent 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. This pathway is utilized by a variety of eubacteria, the plastids of algae and higher plants, and the plastid-like organelle of malaria parasites. Recombinant GcpE protein from the hyperthermophilic bacterium Thermus thermophilus was produced in Escherichia coli and purified under dioxygen-free conditions.

View Article and Find Full Text PDF

Activation of human Vgamma9/Vdelta2 T cells by many pathogens depends on the presence of small phosphorylated non-peptide compounds derived from the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis. We here demonstrate that in Escherichia coli mutants deficient in lytB, an essential gene of the MEP pathway, a potent Vgamma9/Vdelta2 T-cell activator accumulates by a factor of approximately 150 compared to wild-type E. coli.

View Article and Find Full Text PDF