Adaptation of immune cells to tissue-specific microenvironments is a crucial process in homeostasis and inflammation. Here, we show that murine effector type 2 innate lymphoid cells (ILC2s) from various organs are equally effective in repopulating ILC2 niches in other anatomical locations where they adapt tissue-specific phenotypes of target organs. Single-cell transcriptomics of ILC2 populations revealed upregulation of retinoic acid (RA) signaling in ILC2s during adaptation to the small intestinal microenvironment, and RA signaling mediated reprogramming of kidney effector ILC2s toward the small intestinal phenotype in vitro and in vivo.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) that express NK cell receptors (NCRs) and the transcription factor T-bet populate nonlymphoid tissues and are crucial in immune responses against viral infections and malignancies. Recent studies highlighted the heterogeneity of this ILC population and extended their functional spectrum to include important roles in tissue homeostasis and autoimmunity. In this article, we provide detailed profiling of NCRT-bet ILC populations in the murine kidney, identifying conventional NK (cNK) cells and type 1 ILCs (ILC1s) as the two major subsets.
View Article and Find Full Text PDFBackground & Aims: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice.
View Article and Find Full Text PDFA wide spectrum of immunological functions has been attributed to Interleukin 9 (IL-9), including effects on the survival and proliferation of immune and parenchymal cells. In recent years, emerging evidence suggests that IL-9 expression can promote tissue repair in inflammatory conditions. However, data about the involvement of IL-9 in kidney tissue protection is very limited.
View Article and Find Full Text PDFSince their identification as a separate family of leukocytes, Innate lymphoid cells (ILCs) have been shown to play crucial roles in immune-mediated diseases and repair mechanisms that restore tissue integrity after injury. ILCs mainly populate non-lymphoid tissues where they form intricate circuits with parenchymal cells to regulate tissue immunity and organ homeostasis. However, the specific phenotype and function of ILC populations that reside in specific anatomical locations, such as the kidney, still remains poorly understood.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2019
In recent years, the cytokine interleukin (IL)-22 attracted considerable attention due to its important immunoregulatory function in barrier tissues, such as the gut, lung, and skin. Although a regenerative role of IL-22 in renal tubular damage has been demonstrated, the role of IL-22 in the immunopathogenesis of glomerular injury is still unknown. Here, we demonstrate that the IL-22 receptor is expressed in the glomerular compartment of the kidney and that IL-22 expression increases in the renal cortex after induction of glomerular injury in a mouse model for crescentic glomerulonephritis (cGN, nephrotoxic nephritis).
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are important regulators of the immune response and play a crucial role in the restoration of tissue homeostasis after injury. GATA-3 IL-13- and IL-5-producing group 2 innate lymphoid cells (ILC2s) have been shown to promote tissue repair in barrier organs, but despite extensive research on ILCs in the recent years, their potential role in autoimmune diseases is still incompletely understood. In the present study, we investigate the role of ILC2s in the MRL/MpJ-Fas (MRL-lpr) mouse model for severe organ manifestation of systemic lupus erythematosus (SLE).
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) have an important role in the immune system's response to different forms of infectious and noninfectious pathologies. In particular, IL-5- and IL-13-producing type 2 ILCs (ILC2s) have been implicated in repair mechanisms that restore tissue integrity after injury. However, the presence of renal ILCs in humans has not been reported.
View Article and Find Full Text PDFThe insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase that has crucial roles in cell proliferation and protection from apoptosis. It is therefore not surprising that IGF-1R is often found overexpressed in many types of tumors. This has made IGF-1R a prominent target molecule for pharmacological companies to develop new anti-cancer agents.
View Article and Find Full Text PDF