Publications by authors named "Ann-Charlott Steffen"

Alzheimer's disease is characterized by the accumulation of amyloid deposits in the brain and the progressive loss of cognitive functions. Although the precise role of amyloid-β in disease progression remains somewhat controversial, many efforts to halt or reverse disease progression have focussed on reducing its synthesis or enhancing its removal. It is believed that brain and peripheral soluble amyloid-β are in equilibrium and it has previously been hypothesized that a reduction in peripheral amyloid-β can lower brain amyloid-β, thereby reducing formation of plaques predominantly composed of insoluble amyloid-β; the so-called peripheral sink hypothesis.

View Article and Find Full Text PDF

The expression of artemin (ARTN), a glial cell line-derived neurotrophic factor (GDNF) family ligand, increases in pre-clinical models of nociception and recent evidence suggests this growth factor may play a causative role in inflammatory pain mechanisms. The aim of this study was to demonstrate functional inhibition of ARTN with monoclonal antibodies and to determine whether ARTN neutralisation could reverse inflammatory pain in mice. We show that monoclonal antibodies with high affinity to ARTN, completely inhibit ARTN-induced Ret and ERK activation in a human neuroblastoma cell line, and block capsaicin-induced CGRP secretion from primary rat DRG cultures.

View Article and Find Full Text PDF

Background: The capillary microsampling technique was scaled down to enable repeated PK sampling of blood, plasma and serum from mice for the determination of the 14-kDa protein α-synuclein using the Gyrolab™ immunoassay platform.

Results: 4-µl plasma, serum or blood samples were taken from 36 mice, in total 648 samples were successfully collected and analyzed. Following intravenous administration of human α-synuclein to mice, the elimination of α-synuclein was rapid, with a half-life in plasma of 1.

View Article and Find Full Text PDF

Purpose: HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin(R) treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity.

Methods: The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed.

View Article and Find Full Text PDF

Radioimmunotherapy (RIT) could be a possible adjuvant treatment method for patients with colorectal carcinoma. The A33 antigen is a promising RIT target, as it is highly and homogenously expressed in 95% of all colorectal carcinomas. In this study, the humanized monoclonal antibody A33 (huA33), targeting the A33 antigen, was labeled with the therapeutic nuclide 211At, and the biodistribution and in vivo targeting ability of the conjugate was investigated in an athymic mouse xenograft model.

View Article and Find Full Text PDF

The size of affibody molecules makes them suitable as targeting agents for targeted radiotherapy with the alpha-emitter 211At, since their biokinetic properties match the short physical half-live of 211At. In this study, the potential for this approach was investigated in vivo. Two different HER-2 binding affibody molecules were radiolabeled with 211At using both the linker PAB (N-succinimidyl-para-astatobenzoate) and a decaborate-based linker, and the biodistribution in tumor-bearing nude mice was investigated.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to investigate if treatment with lysosomotropic weak bases could increase the intracellular retention of radiohalogens and thereby increase the therapeutic effect of radionuclide tumor targeting.

Methods And Materials: Four different lysosomotropic bases, chloroquine, ammonium chloride, amantadine, and thioridazine, were investigated for their ability to increase radiohalogen retention in vitro. The two most promising substances, chloroquine and ammonium chloride, were studied in several cell lines (A431, U343MGaCl2:6, SKOV-3, and SKBR-3) in combination with radiolabeled epidermal growth factor (EGF) or the HER2 binding affibody (Z(HER2:4))(2).

View Article and Find Full Text PDF

Introduction: The humanized monoclonal antibody A33 (huA33) is a potential targeting agent against colorectal carcinoma since the A33 antigen is highly and homogenously expressed in >95% of all colorectal cancers, both primary tumors and metastases. The aim of this study was to determine the biodistribution and tumor-targeting ability of (177)Lu-labeled huA33.

Methods: huA33 was labeled with the beta-emitting therapeutic nuclide (177)Lu using the chelator CHX-A"-DTPA, and the properties of the (177)Lu-CHX-A"-huA33 ((177)Lu-huA33) conjugate was determined both in vitro and in vivo in a biodistribution study in nude mice xenografted with colorectal SW1222 tumor cells.

View Article and Find Full Text PDF

Background: HER2, which is overexpressed in 25-30% of human breast cancers, is a tyrosine kinase receptor critical for the signal transduction network that regulates proliferation, migration and apoptosis of cells.

Method: We report the effects of two novel HER2-binding affibody molecules (Affibody), (ZHER2:4)2 and ZHER2:342, on intracellular signal transduction pathways (Erk1/2, Akt and PLCgamma1) using quantitative immunoblotting techniques and their biological effects in cell culture. The clinically approved antibody trastuzumab (Herceptin) was used as reference substance.

View Article and Find Full Text PDF

Purpose: Targeted delivery of radionuclides for diagnostic and therapeutic applications has until recently largely been limited to receptor ligands, antibodies and antibody-derived molecules. Here, we present a new type of molecule, a 15-kDa bivalent affibody called (Z(HER2:4))(2), with potential for such applications. The (Z(HER2:4))(2) affibody showed high apparent affinity (K (D)=3 nM) towards the oncogene product HER-2 (also called p185/neu or c-erbB-2), which is often overexpressed in breast and ovarian cancers.

View Article and Find Full Text PDF

The 185 kDa transmembrane glycoprotein human epidermal growth factor receptor 2 (HER-2) (p185/neu, c-ErbB-2) is overexpressed in breast and ovarian cancers. Overexpression in breast cancer correlates with poor patient prognosis, and visualization of HER-2 expression might provide valuable diagnostic information influencing patient management. We have previously described the generation of a new type of affinity ligand, a 58-amino-acid affibody (Z(HER2:4)) with specific binding to HER-2.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to analyse whether non-radiolabelled epidermal growth factor (EGF) can modify the cellular uptake of 125I when delivered as [125I]trastuzumab. 125I was used as a marker for the diagnostically and therapeutically more interesting isotopes 123I (SPECT), 124I (PET) and 131I (therapy).

Methods: The cell-associated radioactivity was measured in squamous carcinoma A431 cells following addition of [125I]trastuzumab.

View Article and Find Full Text PDF

Targeting of tumor cells with radiolabeled biomolecules is a possible approach to inactivate disseminated tumor cells. However, rapid degradation of the biomolecules after cellular internalization and subsequent excretion of the radioactivity is a problem. We studied the possibility of using dextran as a carrier of radionuclides to improve the intracellular retention.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ann-Charlott Steffen"

  • - Ann-Charlott Steffen's research primarily focuses on the interactions and therapeutic implications of proteins related to cancer and neurodegenerative diseases, particularly through innovative methods of drug delivery and molecular targeting in vivo.
  • - Key findings highlight that a sustained reduction of peripheral amyloid-β does not significantly alter central nervous system levels, challenging existing hypotheses regarding the peripheral sink effect in Alzheimer's research. Additionally, interactions of artemin in inflammatory pain have been elucidated, indicating potential targets for pain management therapies.
  • - Steffen has also contributed to the development of novel radiolabeled agents, such as the anti-HER2 affibody and monoclonal antibodies for targeted radionuclide therapy, reinforcing her interest in optimizing therapeutic approaches for cancer treatment, particularly colorectal cancer.