Publications by authors named "Ann Vorwald"

Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for one of the most economically important diseases in swine worldwide. It causes reproductive failure in sows and pneumonia in pigs that predisposes them to secondary bacterial infections. Methods to control PRRSV and/or limit secondary bacterial infections are desired to reduce the impact of this virus on animal health.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a ubiquitous and costly virus that exhibits substantial sequence and virulence disparity among diverse isolates. In this study, we compared the whole genomic sequence and virulence of 4 Type 2 PRRSV isolates. Among the 4 isolates, SDSU73, MN184, and NADC30 were all clearly more virulent than NADC31, and among the 3 more virulent isolates, there were subtle differences based on viral replication, lung lesions, lymphadenopathy, febrile response, decreased weight gains, and cytokine responses in the lung.

View Article and Find Full Text PDF

Fifteen porcine reproductive and respiratory syndrome virus (PRRSV) isolate genomes were derived simultaneously using 454 pyrosequencing technology. The viral isolates sequenced were from a recent swine study, in which engineered Type 2 prototype PRRSV strain VR-2332 mutants, with 87, 184, 200, and 403 amino acid deletions in the second hypervariable region of nsp2, were found to be stable in the nsp2 coding region after in vivo infection (Faaberg et al., 2010).

View Article and Find Full Text PDF

Immunosorbent assays are commonly employed as diagnostic tests in human healthcare, veterinary medicine and bioterrorism prevention. These assays, however, often require long incubation times, limiting sample throughput. As an approach to overcome this weakness, this paper examines the use of rotating capture substrates to increase the flux of antigen to the surface, thereby reducing the incubation time.

View Article and Find Full Text PDF

Amid growing evidence that numerous viral infections can produce immunopathology, including nonspecific polyclonal lymphocyte activation, the need to test the direct impact of an infecting virus on the immune system of the host is crucial. This can best be tested in the isolator piglet model in which maternal and other extrinsic influences can be excluded. Therefore, neonatal isolator piglets were colonized with a benign Escherichia coli, or kept germfree, and then inoculated with wild-type porcine reproductive and respiratory syndrome virus (PRRSV) or sham medium.

View Article and Find Full Text PDF

The objective of this study was to compare the efficacy and safety of single-strain and multi-strain vaccines for the prevention of the respiratory facet of porcine reproductive and respiratory syndrome. The study comprised six groups of pigs (A through F, eight pigs per group). At the beginning of the study (Day 0) Groups C and D were vaccinated with a single-strain vaccine, and Groups E and F were vaccinated with a multi-strain vaccine.

View Article and Find Full Text PDF

The primary objective of the study was to determine strain specificity of the immune response of pigs following vaccination with selected strains of porcine reproductive and respiratory syndrome virus (PRRSV). The experimental design included five groups (I through V, six pigs per group) free of antibody for PRRSV at the beginning of the experiment (day 0). On day 0, groups III, IV, and V were vaccinated with attenuated versions of PRRSV strains 8, 9, and 14, respectively.

View Article and Find Full Text PDF