Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms' tumor 1 () messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients.
View Article and Find Full Text PDFThere is a growing body of evidence that Wilms' tumor protein 1 (WT1) is a promising tumor antigen for the development of a novel class of universal cancer vaccines. Recently, in a National Cancer Institute prioritization project, WT1 was ranked first in a list of 75 cancer antigens. In this light, we exhaustively reviewed all published cancer vaccine trials reporting on WT1-targeted active specific immunotherapy in patients with hematological malignancies and solid tumors.
View Article and Find Full Text PDFActive immunization using tumor antigen-loaded dendritic cells holds promise for the adjuvant treatment of cancer to eradicate or control residual disease, but so far, most dendritic cell trials have been performed in end-stage cancer patients with high tumor loads. Here, in a phase I/II trial, we investigated the effect of autologous dendritic cell vaccination in 10 patients with acute myeloid leukemia (AML). The Wilms' tumor 1 protein (WT1), a nearly universal tumor antigen, was chosen as an immunotherapeutic target because of its established role in leukemogenesis and superior immunogenic characteristics.
View Article and Find Full Text PDFBackground Aims: RNA-electroporated dendritic cell (DC)-based vaccines are rapidly gaining interest as therapeutic cancer vaccines. We report on a phase I dose-escalation trial using clinical-grade manufactured mature RNA-electroporated DC in acute myeloid leukemia (AML) patients.
Methods: CD14(+) cells were isolated from leukapheresis products by immunomagnetic CliniMACS separation and differentiated into mature DC (mDC).
Dendritic cells (DC) are professional Ag-capturing and -presenting cells of the immune system. Because of their exceptional capability of activating tumor-specific T cells, cancer vaccination research is now shifting toward the formulation of a clinical human DC vaccine. We developed a short term and serum-free culture protocol for rapid generation of fully mature, viable, and highly stimulatory CD83(+) DC.
View Article and Find Full Text PDF