Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells.
View Article and Find Full Text PDFBesides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease.
View Article and Find Full Text PDFUnlabelled: Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth.
View Article and Find Full Text PDFImmune cells infiltrate adipose tissue as a function of age, sex, and diet, leading to a variety of regulatory processes linked to metabolic disease and dysfunction. Cytokines and chemokines produced by resident macrophages, B cells, T cells and eosinophils play major role(s) in fat cell mitochondrial functions modulating pyruvate oxidation, electron transport and oxidative stress, branched chain amino acid metabolism, fatty acid oxidation, and apoptosis. Indeed, cytokine-dependent downregulation of numerous genes affecting mitochondrial metabolism is strongly linked to the development of the metabolic syndrome, whereas the potentiation of mitochondrial metabolism represents a counterregulatory process improving metabolic outcomes.
View Article and Find Full Text PDFFatty acid binding protein 4 (FABP4) is a leaderless lipid carrier protein primarily expressed by adipocytes and macrophages that not only functions intracellularly but is also secreted. The secretion is mediated via unconventional mechanism(s), and in a variety of species, metabolic dysfunction is correlated with elevated circulating FABP4 levels. In diabetic animals, neutralizing antibodies targeting serum FABP4 increase insulin sensitivity and attenuate hepatic glucose output, suggesting the functional importance of circulating FABP4.
View Article and Find Full Text PDFObjective: The aim of this study was to test whether the perioperative composition of intestinal microbiota can contribute to variable outcomes following vertical sleeve gastrectomy (VSG).
Summary Of Background Data: Although bariatric surgery is the most effective treatment for obesity, metabolic outcomes are variable.
Methods: Diet-induced obese mice were randomized to VSG or sham surgery, with or without exposure to antibiotics that selectively suppress mainly gram-positive (fidaxomicin, streptomycin) or gram-negative (ceftriaxone) bacteria on postoperative days (POD) 1-4.
Increased oxidative stress and abundance of reactive oxygen species (ROS) are positively correlated with a variety of pathophysiologies, including cardiovascular disease, type 2 diabetes, Alzheimer's disease, and neuroinflammation. In adipose biology, diabetic obesity is correlated with increased ROS in an age- and depot-specific manner and is mechanistically linked to mitochondrial dysfunction, endoplasmic reticulum (ER) stress, potentiated lipolysis, and insulin resistance. The cellular quality control systems that homeostatically regulate oxidative stress in the lean state are down-regulated in obesity as a consequence of inflammatory cytokine pressure leading to the accumulation of oxidized biomolecules.
View Article and Find Full Text PDFBackground: Serum concentrations of fatty acid binding protein 4, an adipose tissue fatty acid chaperone, have been correlated with insulin resistance and cardiovascular risk factors. The objective of this study were to assess relationships among Roux-en-Y gastric bypass, intensive lifestyle modification and medical management protocol, fatty acid binding protein 4, and metabolic parameters in obese patients with severe type 2 diabetes mellitus; and to evaluate the relative contribution of abdominal subcutaneous adipose and visceral adipose to the secretion of fatty acid binding protein 4.
Methods: Participants were randomly assigned to intensive lifestyle modification and medical management protocol (n = 29) or to intensive lifestyle modification and medical management protocol augmented with Roux-en-Y gastric bypass (n = 34).
Previous studies have shown that reduced levels of the adipocyte fatty acid binding protein (FABP)4 (AFABP/aP2), result in metabolic improvement including potentiated insulin sensitivity and attenuated atherosclerosis. Mechanistically, pharmacologic or genetic inhibition of FABP4 in macrophages upregulates UCP2, attenuates reactive oxygen species (ROS) production, polarizes cells toward the anti-inflammatory M2 state, and reduces leukotriene (LT) secretion. At the protein level, FABP4 stabilizes LTA toward chemical hydrolysis, thereby potentiating inflammatory LTC synthesis.
View Article and Find Full Text PDFActivation of proinflammatory macrophages plays an important role in the pathogenesis of insulin resistance, type 2 diabetes, and atherosclerosis. Previous work using high fat-fed mice has shown that ablation of the adipocyte fatty acid binding protein (FABP4/aP2) in macrophages leads to an antiinflammatory state both in situ and in vivo, and the mechanism is linked, in part, to increased intracellular monounsaturated fatty acids and the up-regulation of uncoupling protein 2. Here, we show that loss of FABP4/aP2 in macrophages additionally induces sirtuin 3 (SIRT3) expression and that monounsaturated fatty acids (C16:1, C18:1) lead to increased SIRT3 protein expression.
View Article and Find Full Text PDFChronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3.
View Article and Find Full Text PDFObesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed.
View Article and Find Full Text PDFWe reported earlier that β-cell-specific overexpression of glutathione peroxidase (GPx)-1 significantly ameliorated hyperglycemia in diabetic db/db mice and prevented glucotoxicity-induced deterioration of β-cell mass and function. We have now ascertained whether early treatment of Zucker diabetic fatty (ZDF) rats with ebselen, an oral GPx mimetic, will prevent β-cell deterioration. No other antihyperglycemic treatment was given.
View Article and Find Full Text PDFObesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed.
View Article and Find Full Text PDFMolecular disruption of the lipid carrier AFABP/aP2 in mice results in improved insulin sensitivity and protection from atherosclerosis. Because small molecule inhibitors may be efficacious in defining the mechanism(s) of AFABP/aP2 action, a chemical library was screened and identified 1 (HTS01037) as a pharmacologic ligand capable of displacing the fluorophore 1-anilinonaphthalene 8-sulfonic acid from the lipid binding cavity. The X-ray crystal structure of 1 bound to AFABP/aP2 revealed that the ligand binds at a structurally similar position to a long-chain fatty acid.
View Article and Find Full Text PDFThe hormone-sensitive lipase (HSL) and adipocyte fatty acid-binding protein (AFABP/aP2) form a physical complex that affects basal and hormone-stimulated adipocyte fatty acid efflux. Previous work has established that AFABP/aP2-HSL complex formation requires that HSL be in its activated, phosphorylated form and AFABP/aP2 have a bound fatty acid. To identify the HSL binding site of AFABP/aP2 a combination of alanine-scanning mutagenesis and fluorescence resonance energy transfer was used.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2006
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice.
View Article and Find Full Text PDFThe metabolic syndrome is a cluster of metabolic and inflammatory abnormalities including obesity, insulin resistance, type 2 diabetes, hypertension, dyslipidemia, and atherosclerosis. The fatty acid binding proteins aP2 (fatty acid binding protein [FABP]-4) and mal1 (FABP5) are closely related and both are expressed in adipocytes. Previous studies in aP2-deficient mice have indicated a significant role for aP2 in obesity-related insulin resistance, type 2 diabetes, and atherosclerosis.
View Article and Find Full Text PDFFatty acid binding proteins (FABPs) are low-molecular-mass, soluble, intracellular lipid carriers. Previous studies on adipocytes from adipocyte fatty acid binding protein (A-FABP)-deficient mice have revealed that both basal and isoproterenol-stimulated lipolysis were markedly reduced (Coe et al. 1999.
View Article and Find Full Text PDF4-Hydroxynonenal (4-HNE) is a cytotoxic alpha,beta-unsaturated acyl aldehyde that is naturally produced from lipid peroxidation and cleavage in response to oxidative stress and aging. Such reactive lipids covalently modify cellular target proteins, thereby affecting biological structure and function. Herein we report the identification of the epithelial fatty acid-binding protein (E-FABP) as a molecular target for 4-HNE modification both in vitro and in vivo.
View Article and Find Full Text PDF