The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited.
View Article and Find Full Text PDFThe cellular responses to hypoxia or hypoxia-ischemia (HI) are governed largely by the hypoxia-inducible factor (HIF) family of transcription factors. Our previous studies show that HIF-1α induction is an important factor that mediates protective effects in the brain after neonatal HI. In the present study, we investigated the contribution of another closely related HIF α isoform, HIF-2α, specifically the neuronal HIF-2α, to brain HI injury.
View Article and Find Full Text PDFBackground: Hyperpolarized 13C spectroscopic magnetic resonance spectroscopy (MRS) is an advanced imaging tool that may provide important real-time information about brain metabolism.
Methods: Mice underwent unilateral hypoxia-ischemia (HI) on postnatal day (P)10. Injured and sham mice were scanned at P10, P17, and P31.
Background: Arginases (ARG isoforms, ARG-1/ARG-2) are key regulatory enzymes of inflammation and tissue repair; however, their role after neonatal brain hypoxia (H) and hypoxia-ischemia (HI) remains unknown.
Methods: C57BL/6 mice subjected to the Vannucci procedure on postnatal day (P9) were sacrificed at different timepoints. The degree of brain damage was assessed histologically.
Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies.
View Article and Find Full Text PDFBrain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic brain injury is commonly studied by means of the Vannucci procedure in mice or rats (unilateral common carotid artery occlusion followed by hypoxia). Previously, we modified the postnatal day 7 (P7) rat procedure for use in mice, and later demonstrated that genetic strain strongly influences the degree of brain injury in the P7 mouse model of hypoxia-ischemia (HI). Recently, the P9 or P10 mouse brain was recognized as the developmental equivalent of a term neonatal human brain, rather than P7.
View Article and Find Full Text PDFBackgroundTherapeutic hypothermia (TH) is the standard of care for neonates with hypoxic-ischemic encephalopathy, but it is not fully protective in the clinical setting. Hypoxia-ischemia (HI) may cause white matter injury (WMI), leading to neurological and cognitive dysfunction.MethodsP9 mice were subjected to HI as previously described.
View Article and Find Full Text PDFThe neonatal brain is highly susceptible to oxidative stress as developing endogenous antioxidant mechanisms are overwhelmed. In the neonate, superoxide dismutase (SOD) overexpression worsens hypoxic-ischemic injury due to H2O2 accumulation in the brain. Erythropoietin (EPO) is upregulated in 2 phases after HI, early (4 h) and late (7 days), and exogenous EPO has been effective in reducing the injury, possibly through reducing oxidative stress.
View Article and Find Full Text PDFHyperpolarized 13C magnetic resonance imaging has recently been used to dynamically image metabolism in vivo. This technique provides the capability to investigate metabolic changes in mouse brain development over multiple time points. In this study, we used 13C magnetic resonance spectroscopic imaging and hyperpolarized 13C-1-labeled pyruvate to analyze its conversion into lactate.
View Article and Find Full Text PDFWe have previously shown that glutathione peroxidase (GPx) overexpressing mice (hGPx-tg) have reduced brain injury after neonatal hypoxia-ischemia (HI) as a consequence of reduced hydrogen peroxide accumulation. However, this protection is reversed with hypoxia preconditioning, raising the question of the roles of the genes regulated by hypoxia-inducible factor-1α (HIF-1α) and their transcription products, such as erythropoietin (EPO), in both the initial protection and subsequent reversal of protection. hGPx-tg and their wild-type (WT) littermates underwent the Vannucci procedure of HI brain injury at postnatal day 9 - left carotid artery ligation followed by exposure to 10% oxygen for 50 min.
View Article and Find Full Text PDFBackground: Hypoxic preconditioning (HPc) protects the neonatal brain in the setting of hypoxia-ischemia (HI). The mechanisms of protection may depend on activation of hypoxia-inducible factor (HIF-1α). This study sought to clarify the role of HIF-1α after HPc and HI.
View Article and Find Full Text PDFBackground: Mild brain hypothermia (31-34 °C) after neonatal hypoxia-ischemia (HI) improves neurodevelopmental outcomes in human and animal neonates. Using an asphyxia model with neonatal mice treated with mild hypothermia after HI, we investigated whether (1)H nuclear magnetic resonance (NMR) metabolomics of brain extracts could suggest biomarkers and distinguish different treatments and outcome groups.
Methods: At postnatal day 7 (P7), CD1 mice underwent right carotid artery occlusion, 30 min of HI (8% oxygen), and 3.
Background And Purpose: Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery.
View Article and Find Full Text PDFBackground: Hypoxic-ischemic (HI) injury to the developing brain remains a major cause of morbidity. Hypothermia is effective but does not provide complete neuroprotection, prompting a search for adjunctive therapies. Erythropoietin (Epo) has been shown to be beneficial in several models of neonatal HI.
View Article and Find Full Text PDFBackground: Preconditioning of neonatal mice with nonlethal hypoxia (HPC) protects the brain from hypoxic-ischemic (HI) injury. Overexpression of human glutathione peroxidase 1 (GPx1), which normally protects the developing murine brain from HI injury, reverses HPC protection, suggesting that a certain threshold of hydrogen peroxide concentration is required for activation of HPC signaling.
Methods: Activation (phosphorylation) of extracellular-regulated kinase (ERK) 1/2 and Akt, and induction of hypoxia-inducible factor (HIF)-1α were assessed in the cortex, one of the main structures affected by HI and protected by HPC, at different time points after reoxygenation in wild-type (WT) and GPx1-overexpressing animals.
Two-day-old (P2) rat pups were subjected to either a global hypoxia or to electrocoagulation of the right carotid artery followed by 2.5 h hypoxia. Cellular and regional injury in the cerebellum (CB) was studied at 1, 2 and 19 days using immunohistology.
View Article and Find Full Text PDFQualitative research has rarely explored gender-based concerns of men with disabilities. Accordingly, this research investigates body image and self-concept for men with an acquired spinal cord injury (SCI). Modified grounded theory analysis was conducted for secondary, qualitative interview data of 64 male participants from a study of community dwellers living with SCI.
View Article and Find Full Text PDFEvidence suggests that the activation of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1 alpha) may promote cell survival in hypoxic or ischemic brain. To help understand the role of HIF-1 alpha in neonatal hypoxic-ischemic brain injury, mice with conditional neuron-specific inactivation of HIF-1 alpha underwent hypoxia-ischemia (HI). Mice heterozygous for Cre recombinase under the control of the calcium/calmodulin-dependent kinase II promoter were bred with homozygous 'floxed' HIF-1 alpha transgenic mice.
View Article and Find Full Text PDFObjective: Neonatal stroke is associated with the N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxic brain injury. Src family kinases (SFKs) are considered to be the molecular hub for NMDAR regulation. We determined the relationship between SFKs activation and NMDAR tyrosine phosphorylation after neonatal hypoxia-ischemia (HI) and investigated the neuroprotective potential of a selective SFKs inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyramidine), against neonatal brain ischemic injury.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2008
Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury.
View Article and Find Full Text PDFActivation of Fas death receptor (Fas DR) signaling cascade is seen after neonatal hypoxia-ischemia (HI). Cell survival is favored when signaling through the death-inducing signaling complex and cleavage of caspase 8 to its active form is blocked by FLIP, a dominant negative of caspase 8. H2O2 quickly downregulates expression of FLIP.
View Article and Find Full Text PDFThe effect of hypoxic preconditioning (PC) on hypoxic-ischemic (HI) injury was explored in glutathione peroxidase (GPx)-overexpressing mice (human GPx-transgenic [hGPx-tg]) mice. Six-day-old hGPx-tg mice and wild-type (Wt) littermates were pre-conditioned with hypoxia for 30 min and subjected to the Vannucci procedure of HI 24 h after the PC stimulus. Histopathological injury was determined 5 d later (P12).
View Article and Find Full Text PDFThe neonatal brain responds differently to hypoxic-ischemic injury and may be more vulnerable than the mature brain due to a greater susceptibility to oxidative stress. As a measure of oxidative stress, the immature brain should accumulate more hydrogen peroxide (H2O2) than the mature brain after a similar hypoxic-ischemic insult. To test this hypothesis, H2O2 accumulation was measured in postnatal day 7 (P7, neonatal) and P42 (adult) CD1 mouse brain regionally after inducing HI by carotid ligation followed by systemic hypoxia.
View Article and Find Full Text PDFBackground And Purpose: Caspase-8 and caspase-9 are essential proteases of the extrinsic and intrinsic apoptotic pathways, respectively. We investigated whether neuroprotection associated with overexpression of heat-shock protein 70 (Hsp70), a natural cellular antiapoptotic protein, is mediated by caspase-8 and caspase-9 signaling in the neonatal mouse brain after hypoxia/ischemia (H/I) injury.
Methods: Postnatal day 7 transgenic mice overexpressing rat Hsp70 (Hsp70 Tg) and their wild-type (Wt) littermates underwent unilateral common carotid artery ligation followed by 30 minutes of exposure to 8% O2.