Publications by authors named "Ann Rose"

Comparative studies using non-parasitic model species such as Caenorhabditis elegans, have been very helpful in investigating the basic biology and evolution of parasitic nematodes. However, as phylogenetic distance increases, these comparisons become more difficult, particularly when outside of the nematode clade to which C. elegans belongs (V).

View Article and Find Full Text PDF

Background: Essential genes are required for an organism's viability and their functions can vary greatly, spreading across many pathways. Due to the importance of essential genes, large scale efforts have been undertaken to identify the complete set of essential genes and to understand their function. Studies of genome architecture and organization have found that genes are not randomly disturbed in the genome.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how muscle protein degradation occurs in the nematode C. elegans, focusing on the role of UNC-105/degenerin channel activation and its effects on muscle function.
  • Methods included creating genetic mutants, using RNA interference, and performing enzyme assays to evaluate the molecular processes involved in protein degradation and mitochondrial function.
  • Results indicate that enhanced activity of the UNC-105 channel leads to muscle degradation and movement issues, linked to mitochondrial dysfunction and a specific degradation pathway involving caspases, highlighting implications for muscle decline in aging populations.
View Article and Find Full Text PDF

Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage.

View Article and Find Full Text PDF

The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo.

View Article and Find Full Text PDF

Background: Whole and partial chromosome losses or gains and structural chromosome changes are hallmarks of human tumors. Guanine-rich DNA, which has a potential to form a G-quadruplex (G4) structure, is particularly vulnerable to changes. In Caenorhabditis elegans, faithful transmission of G-rich DNA is ensured by the DOG-1/FANCJ deadbox helicase.

View Article and Find Full Text PDF

Spindle assembly checkpoint (SAC) ensures genome stability by delaying anaphase onset until all the chromosomes have achieved proper spindle attachment. Once correct attachment has been achieved, SAC must be silenced. In the absence of mdf-1/MAD1, an essential SAC component, Caenorhabditis elegans cannot propagate beyond 3 generations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on identifying essential genes in the organism Caenorhabditis elegans, which are crucial for development and linked to various human diseases.
  • Researchers utilized whole genome sequencing on mutant strains to find mutations responsible for lethality, successfully identifying 64 essential genes characterized by various mutation types.
  • The findings provide a valuable genetic resource for further research on essential gene functions, contributing to our understanding of development and potential implications for human health.
View Article and Find Full Text PDF

The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C.

View Article and Find Full Text PDF

The Fanconi anemia (FA) pathway recognizes interstrand DNA crosslinks (ICLs) and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans.

View Article and Find Full Text PDF

Suppressor screens are an invaluable method for identifying novel genetic interactions between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has suffered from the laborious and protracted process of mapping mutations at the molecular level. Using a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization (aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of the essential receptor tyrosine kinase rol-3.

View Article and Find Full Text PDF

C. elegans provides an excellent model system for the study of the Fanconi Anemia (FA), one of the hallmarks of which is sensitivity to interstrand crosslinking agents. Central to our understanding of FA has been the investigation of DOG-1, the functional ortholog of the deadbox helicase FANCJ.

View Article and Find Full Text PDF

Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets.

View Article and Find Full Text PDF

The Ataxia-telangiectasia-mutated (ATM) gene in humans was identified as the basis of a rare autosomal disorder leading to cancer susceptibility and is now well known as an important signal transducer in response to DNA damage. An approach to understanding the conserved functions of this gene is provided by the model system, Caenorhabditis elegans. In this paper we describe the structure and loss of function phenotype of the ortholog atm-1.

View Article and Find Full Text PDF

The issue of heterozygosity continues to be a challenge in the analysis of genome sequences. In this article, we describe the use of allele ratios to distinguish biologically significant single-nucleotide variants from background noise. An application of this approach is the identification of lethal mutations in Caenorhabditis elegans essential genes, which must be maintained by the presence of a wild-type allele on a balancer.

View Article and Find Full Text PDF

Research on Caenorhabditis elegans involves the use of a wide range of genetic and molecular tools consisting of chromosomal material captured and modified for specific purposes. These "specialized chromosomes" come in many forms ranging from relatively simple gene deletions to complex rearrangements involving endogenous chromosomes as well as transgenic constructs. In this chapter, we describe the specialized chromosomes that are available in C.

View Article and Find Full Text PDF

A family of helicases that are important in maintaining genome stability is the iron-sulfur group. Members of this family include DOG-1/FANCJ, RTEL1, XPD and Chl1p/DDX11. In Caenorhabitis elegans, the predicted gene M03C11.

View Article and Find Full Text PDF

mdf-1/MAD1 is a conserved spindle assembly checkpoint component that is essential for the survival of Caenorhabditis elegans. Previously, using a dog-1(gk10)/FANCJ mutator strain, we have isolated a suppressor of mdf-1(gk2) sterility. This suppressor, named such-4, was demonstrated to be a tandem duplication that contained 62 putative protein coding genes.

View Article and Find Full Text PDF

Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart (crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the antirecombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing.

View Article and Find Full Text PDF

Background: The original sequencing and annotation of the Caenorhabditis elegans genome along with recent advances in sequencing technology provide an exceptional opportunity for the genomic analysis of wild-type and mutant strains. Using the Illumina Genome Analyzer, we sequenced the entire genome of Rec-1, a strain that alters the distribution of meiotic crossovers without changing the overall frequency. Rec-1 was derived from ethylmethane sulfonate (EMS)-treated strains, one of which had a high level of transposable element mobility.

View Article and Find Full Text PDF

Somatic mutations causing chromosome instability (CIN) in tumors can be exploited for selective killing of cancer cells by knockdown of second-site genes causing synthetic lethality. We tested and statistically validated synthetic lethal (SL) interactions between mutations in six Saccharomyces cerevisiae CIN genes orthologous to genes mutated in colon tumors and five additional CIN genes. To identify which SL interactions are conserved in higher organisms and represent potential chemotherapeutic targets, we developed an assay system in Caenorhabditis elegans to test genetic interactions causing synthetic proliferation defects in somatic cells.

View Article and Find Full Text PDF

Genomic rearrangements are widely used in Caenorhabditis elegans research but many remain incompletely characterized at the physical level. We have used oligo-array comparative genomic analysis to assess the physical structure of 20 deficiencies and a single duplication of chromosome V. We find that while deletions internal to the chromosome appear simple in structure, terminal deletions are complex, containing duplications in addition to the deletion.

View Article and Find Full Text PDF

Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive.

View Article and Find Full Text PDF

The Caenorhabditis elegans ortholog of the Fanconi anemia pathway component J (FANCJ) is DOG-1, which is essential for genome stability. Previous studies have shown that disruption of the dog-1 gene generates small deletions of poly-C/poly-G tracts detectable by PCR and results in a mutator phenotype. In this paper, we describe the isolation and characterization of lethal mutations resulting from the loss of dog-1 function.

View Article and Find Full Text PDF