Publications by authors named "Ann Reid"

Shock is a state of inadequate perfusion that affects vital organs. Cardiogenic shock (CS) predisposes patients to various arrhythmias. The adverse effect depends on intervention and pharmacogenomics.

View Article and Find Full Text PDF

Electronic case reporting (eCR) is the automated generation and transmission of case reports from electronic health records to public health for review and action. These reports (electronic initial case reports: eICRs) adhere to recommended exchange and terminology standards. eCR is a partnership of the Centers for Disease Control and Prevention (CDC), Association of Public Health Laboratories (APHL) and Council of State and Territorial Epidemiologists (CSTE).

View Article and Find Full Text PDF

Fundamental observations about nature sometimes take a circuitous and utterly unpredictable course from bright idea to demonstrably practical impact. The tale of how Carl Woese's basic insights about microbial diversity eventually contributed to the emergence of a new field of science with numerous potential applications is just such a story.

View Article and Find Full Text PDF

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction.

View Article and Find Full Text PDF

Background: The reasons for the unusual age-specific mortality patterns of the 1918-1919 influenza pandemic remain unknown. Here we characterize pandemic-related mortality by single year of age in a unique statewide Kentucky data set and explore breakpoints in the age curves.

Methods: Individual death certificates from Kentucky during 1911-1919 were abstracted by medically trained personnel.

View Article and Find Full Text PDF

Objectives: To assess public knowledge of stroke and transient ischaemic attack symptoms, and awareness of the content of a recent national health campaign.

Design: Interviewer-administered questionnaire.

Setting: Leicester, UK.

View Article and Find Full Text PDF

The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains.

View Article and Find Full Text PDF

The nucleoprotein (NP) gene of the 1918 pandemic influenza A virus has been amplified and sequenced from archival material. The NP gene is known to be involved in many aspects of viral function and to interact with host proteins, thereby playing a role in host specificity. The 1918 NP amino acid sequence differs at only six amino acids from avian consensus sequences, consistent with reassortment from an avian source shortly before 1918.

View Article and Find Full Text PDF

Annual outbreaks of influenza A infection are an ongoing public health threat and novel influenza strains can periodically emerge to which humans have little immunity, resulting in devastating pandemics. The 1918 pandemic killed at least 40 million people worldwide and pandemics in 1957 and 1968 caused hundreds of thousands of deaths. The influenza A virus is capable of enormous genetic variation, both by continuous, gradual mutation and by reassortment of genome segments between viruses.

View Article and Find Full Text PDF

The “Spanish influenza pandemic swept the globe in the autumn and winter of 1918–19, and resulted in the deaths of approximately 40 million people. Clinically, epidemiologically, and pathologically, the disease was remarkably uniform, which suggests that similar viruses were causing disease around the world. To assess the homogeneity of the 1918 pandemic influenza virus, partial hemagglutinin gene sequences have been determined for five cases, including two newly identified samples from London, United Kingdom.

View Article and Find Full Text PDF

Severe acute respiratory syndrome (SARS) is an infectious condition caused by the SARS-associated coronavirus (SARS-CoV), a new member in the family Coronaviridae. To evaluate the lung pathology in this life-threatening respiratory illness, we studied postmortem lung sections from 8 patients who died from SARS during the spring 2003 Singapore outbreak. The predominant pattern of lung injury in all 8 cases was diffuse alveolar damage.

View Article and Find Full Text PDF

Influenza A virus is a major public health threat, killing more than 30,000 per year in the USA alone, sickening millions and inflicting substantial economic costs. Novel influenza virus strains emerge periodically to which humans have little immunity, resulting in devastating pandemics. The 1918 pandemic killed nearly 700,000 Americans and 40 million people worldwide.

View Article and Find Full Text PDF

The coding region of influenza A virus RNA segment 7 from the 1918 pandemic virus, consisting of the open reading frames of the two matrix genes M1 and M2, has been sequenced. While this segment is highly conserved among influenza virus strains, the 1918 sequence does not match any previously sequenced influenza virus strains. The 1918 sequence matches the consensus over the M1 RNA-binding domains and nuclear localization signal and the highly conserved transmembrane domain of M2.

View Article and Find Full Text PDF

Wild waterfowl captured between 1915 and 1919 were tested for influenza A virus RNA. One bird, captured in 1917, was infected with a virus of the same hemagglutinin (HA) subtype as that of the 1918 pandemic virus. The 1917 HA is more closely related to that of modern avian viruses than it is to that of the pandemic virus, suggesting (i) that there was little drift in avian sequences over the past 85 years and (ii) that the 1918 pandemic virus did not acquire its HA directly from a bird.

View Article and Find Full Text PDF