To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification.
View Article and Find Full Text PDFThe tumor suppressor p53 regulates various stress responses via increasing its cellular levels. The lowest p53 levels occur in unstressed cells; however, the functions of these low levels remain unclear. To investigate the functions, we used empirical single-cell tracking of p53-expressing (Control) cells and cells in which p53 expression was silenced by RNA interference (p53 RNAi).
View Article and Find Full Text PDFAspergillus fumigatus is an opportunistic mold that infects patients who are immunocompromised or have chronic lung disease, causing significant morbidity and mortality in these populations. While the factors governing the host response to A. fumigatus remain poorly defined, neutrophil recruitment to the site of infection is critical to clear the fungus.
View Article and Find Full Text PDFGalectins are a family of soluble β-galactoside-binding proteins that share conserved carbohydrate recognition domain. Galectins are found in most multicellular organisms and exert various biological functions by binding to the surface glycoconjugates as lectins. In this chapter, we describe the general methods of purification of galectins, quality control of purified galectins, some example methods of evaluating their carbohydrate-binding activity, and use of galectin to search or detect galectin ligands as well as a series of precautions for the usage of galectins.
View Article and Find Full Text PDFCultured cell populations are composed of heterogeneous cells, and previous single-cell lineage tracking analysis of individual HeLa cells provided empirical evidence for significant heterogeneity of the rate of cell proliferation and induction of cell death. Nevertheless, such cell lines have been used for investigations of cellular responses to various substances, resulting in incomplete characterizations. This problem caused by heterogeneity within cell lines could be overcome by investigating the spatiotemporal responses of individual cells to a substance.
View Article and Find Full Text PDFThe muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration.
View Article and Find Full Text PDFMammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 (PARP-1) modifies various proteins, including itself, with ADP-ribose polymers (automodification). Polymer synthesis is triggered by binding of its zinc finger 1 (Zn1) and 2 (Zn2) to DNA breaks and is followed by inactivation through automodification. The multiple functional domains of PARP-1 appear to regulate activation and automodification-mediated inactivation of PARP-1.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus.
View Article and Find Full Text PDFHuman immunodeficiency virus, type 1 (HIV-1) transcription is regulated by a virus-encoded protein, Tat, which forms a complex with a host cellular factor, positive transcription elongation factor b (P-TEFb). When this complex binds to TAR RNA synthesized from the HIV-1 long terminal repeat promoter element, transcription is trans-activated. In this study we showed that, in host cells, HIV-1 transcription is negatively regulated by competition of poly(ADP-ribose) polymerase-1 (PARP-1) with Tat.
View Article and Find Full Text PDFRecruitment of neutrophils from blood vessels to sites of infection represents one of the most important elements of innate immunity. Movement of neutrophils across blood vessel walls to the site of infection first requires that the migrating cells firmly attach to the endothelial wall. Generally, neutrophil extravasation is mediated at least in part by two classes of adhesion molecules, beta(2) integrins and selectins.
View Article and Find Full Text PDF