Purpose: The purpose of the studies described in this mini review article was to identify nontoxic compounds that could prevent or suppress the radiation induced malignant transformation of cells and be useful as human cancer preventive agents.
Conclusions: (1) Many different types of potential anticarcinogenic substances were evaluated initially for their abilities to prevent or suppress radiation induced malignant transformation in vitro, and certain anticarcinogenic protease inhibitors (APIs) were observed to be the most powerful anticarcinogenic agents at suppressing this surrogate endpoint biomarker of radiation carcinogenesis. (2) Within the category of APIs, those that inhibited the activity of chymotrypsin were effective at far lower molar concentrations than other APIs.
Purpose: Recent studies suggest that ultrahigh-dose-rate, "FLASH," electron radiation therapy (RT) decreases normal tissue damage while maintaining tumor response compared with conventional dose rate RT. Here, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with computed tomography guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection.
Methods And Materials: Absolute dose was measured at multiple depths in solid water and validated against an absolute integral charge measurement using a Faraday cup.
D-dimer plasma levels were evaluated to determine whether they are altered by radiation. D-dimer levels were measured in radiation oncology patients, who were diagnosed with prostate, breast or lung cancer, or leukemia, as well as in healthy subjects serving as controls. Blood samples from radiotherapy patients were taken at three different time points: pre-, on- and post-radiotherapy.
View Article and Find Full Text PDFThe cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.
View Article and Find Full Text PDFDespite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions.
View Article and Find Full Text PDFResults from our recent studies have led to the novel hypothesis that radiation-induced coagulopathy (RIC) and associated hemorrhage occurring as part of the acute radiation syndrome (ARS) is a major cause of death resulting from radiation exposure in large mammals, including humans. This article contains information related to RIC, as well as potential strategies for the prevention and treatment of RIC. In addition, new findings are reported here on the occurrence of RIC biomarkers in humans exposed to radiation.
View Article and Find Full Text PDFThe space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum.
View Article and Find Full Text PDFThe left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model.
View Article and Find Full Text PDFAstronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection.
View Article and Find Full Text PDFA major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity.
View Article and Find Full Text PDFDuring a major solar particle event (SPE), astronauts in space are at risk of exposure to an increased dose of proton radiation. The whole body distribution of the absorbed SPE proton dose is inhomogeneous, and such an inhomogeneous SPE proton dose can be simulated by electron radiation. Using Yucatan minipigs as an animal model, we compared the time courses of leukocyte count changes after exposure to proton simulated SPE (pSPE) radiation or electron simulated SPE (eSPE) radiation.
View Article and Find Full Text PDFJ Womens Health (Larchmt)
November 2014
This review is focused on sex and gender effects on immunological alterations occurring during space flight. Sex differences in immune function and the outcome of inflammatory, infectious, and autoimmune diseases are well documented. The work of the Immunology Workgroup identified numerous reasons why there could be sex and/or gender differences observed during and after spaceflight, but thus far, there has been very little investigation in this area of research.
View Article and Find Full Text PDFColorimetric staining techniques such as immunohistochemistry (IHC), immunofluorescence (IF) and histochemistry (HC) provide useful information regarding the localization and relative amount of a molecule/substance in skin. We have developed a novel, straightforward method to assess colorimetric staining by combining features from two open-source software programs. As a proof of principle, we demonstrate the utility of this approach by analysing changes in skin melanin deposition during the radiation-induced tanning response of Yucatan mini-pigs.
View Article and Find Full Text PDFAstronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells.
View Article and Find Full Text PDFExposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
April 2014
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development.
View Article and Find Full Text PDFNASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection.
View Article and Find Full Text PDFIn previously performed animal studies and Phase I-II human trials, Bowman-Birk inhibitor concentrate (BBIC) appeared to be a promising cancer chemopreventive agent. The present study describes the results of two phase I randomized double-blind placebo-controlled trials performed in male subjects to assess the safety and toxicity of the original and new formulations of BBIC administered in a single dose as a suspension in orange juice. The dose of BBIC varied from 800-2,000 chymotrypsin inhibitor (CI) units.
View Article and Find Full Text PDFThe space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals.
View Article and Find Full Text PDFThe United States radiation medical countermeasures (MCM) programme for radiological and nuclear incidents has been focusing on developing mitigators for the acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), and biodosimetry technologies to provide radiation dose assessments for guiding treatment. Because a nuclear accident or terrorist incident could potentially expose a large number of people to low to moderate doses of ionising radiation, and thus increase their excess lifetime cancer risk, there is an interest in developing mitigators for this purpose. This article discusses the current status, issues, and challenges regarding development of mitigators against radiation-induced cancers.
View Article and Find Full Text PDFPurpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis.
Methods And Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation.
A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice.
View Article and Find Full Text PDF