Publications by authors named "Ann Powell"

Behavioral contrast is defined as a change in reinforcement conditions in one context that causes a change in behavior in the opposite direction in another, unchanged context. Although behavioral contrast has implications for applied behavior analysts, researchers have not examined ramifications or identified common methods of mitigating contrast in applied settings. Therefore, we surveyed Board Certified Behavior Analysts in an exploratory investigation to determine practitioner experiences with behavioral contrast.

View Article and Find Full Text PDF

Postharvest fungal pathogens benefit from the increased host susceptibility that occurs during fruit ripening. In unripe fruit, pathogens often remain quiescent and unable to cause disease until ripening begins, emerging at this point into destructive necrotrophic lifestyles that quickly result in fruit decay. Here, we demonstrate that one such pathogen, Botrytis cinerea, actively induces ripening processes to facilitate infections and promote disease in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Fruit cracking is an important problem in horticultural crop production. Polygalacturonase (SlPG) and expansin (SlEXP1) proteins cooperatively disassemble the polysaccharide network of tomato fruit cell walls during ripening and thereby, enable softening. A Golden 2-like (GLK2) transcription factor, SlGLK2 regulates unripe fruit chloroplast development and results in elevated soluble solids and carotenoids in ripe fruit.

View Article and Find Full Text PDF

Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase.

View Article and Find Full Text PDF

Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.

View Article and Find Full Text PDF

Cultured microalgae are viewed as important producers of lipids and polysaccharides, both of which are precursor molecules for the production of biofuels. This study addressed the impact of elevated carbon dioxide (CO2) on Chlorella sorokiniana production of starch and on several properties of the starch produced. The production of C.

View Article and Find Full Text PDF

Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks.

View Article and Find Full Text PDF

Botrytized wines are produced from grape berries infected by Botrytis cinerea under specific environmental conditions. Here, we report the draft genome sequence of B. cinerea BcDW1, a strain isolated from Sémillon grapes in Napa Valley in 1992 that is used with the intent to induce noble rot for botrytized wine production.

View Article and Find Full Text PDF

Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea.

View Article and Find Full Text PDF

Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs--SlGLK1 and SlGLK2--are expressed in leaves, but only SlGLK2 is expressed in fruit.

View Article and Find Full Text PDF

Grafting has been used in agriculture for over 2000 years. Disease resistance and environmental tolerance are highly beneficial traits that can be provided through use of grafting, although the mechanisms, in particular for resistance, have frequently been unknown. As information emerges that describes plant disease resistance mechanisms, the proteins, and nucleic acids that play a critical role in disease management can be expressed in genetically engineered (GE) plant lines.

View Article and Find Full Text PDF

Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B.

View Article and Find Full Text PDF

The ascomycete Botrytis cinerea is a destructive and ubiquitous plant pathogen and represents a model organism for the study of necrotrophic fungal pathogens. Higher fungi possess a complex and dynamic multilayer cell wall involved in crucial aspects of fungal development, growth and pathogenicity. Plant resistance to microbial pathogens is determined often by the capacity of the plant to recognize molecular patterns associated with the surface of an interacting microbe.

View Article and Find Full Text PDF

Fruit ripening is a developmental process that is associated with increased susceptibility to the necrotrophic pathogen Botrytis cinerea. Histochemical observations demonstrate that unripe tomato (Solanum lycopersicum) fruit activate pathogen defense responses, but these responses are attenuated in ripe fruit infected by B. cinerea.

View Article and Find Full Text PDF

Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions.

View Article and Find Full Text PDF

Boysenberry fruit was harvested at five developmental stages, from green to purple, and changes in pectin and hemicellulose solubilisation and depolymerisation, polymer neutral sugar contents, and the activities of cell wall degrading enzymes were analysed. The high xylose to glucose ratio in the 4% KOH-soluble hemicellulose fraction suggests that xylans are abundant in the boysenberry cell wall. Although the cell wall changes associated with fruit development do not proceed in discrete stages and the cell wall disassembly is a consequence of highly regulated changes occurring in a continuum, the results suggest that the temporal changes in cell wall degradation in boysenberry account for at least three stages: an early stage (green to 75% red colour), associated with metabolism of cellulose and cross-linking glycans; an intermediate period (75 to 100% red colour), characterised by substantial pectin solubilisation without depolymerisation in which α-arabinofuranosidase increases markedly and 50% of the wall arabinose is lost; and a final stage (100% red colour to purple), characterised mainly by a reduction of pectic galactose content and a dramatic increase in pectin depolymerisation associated with higher polygalacturonase, pectin methylesterase, acetyl esterase and β-galactosidase activities.

View Article and Find Full Text PDF

The bovine's long generation interval results in a delay of several years when evaluating mammary specific transgenes in genetically engineered animals. This experiment was conducted to evaluate the feasibility of reducing that waiting period. Lactation was induced in prepubertal bull and heifer calves as a means of predicting transgene behaviour during subsequent post-parturient lactations in the heifers themselves, and in daughters sired by the bulls.

View Article and Find Full Text PDF

Softening and pathogen susceptibility are the major factors limiting the marketing of blueberries as fresh fruits, and these traits are associated with fruit cell wall structure. However, few studies that characterize wall modifications occurring during development and ripening have been reported for this fruit. In this study the ripening-associated modifications of blueberry fruit cell walls (composition, pectin and hemicellulose solubilization, and depolymerization) at five stages of ripeness have been analyzed.

View Article and Find Full Text PDF

Raspberry fruits were harvested at five developmental stages, from green to red ripe, and the changes in cell wall composition, pectin and hemicellulose solubilization, and depolymerization were analyzed. Fruit softening at intermediate stages of ripening was associated with increased pectin solubilization, which occurred without depolymerization. Arabinose was found to be the most abundant noncellulosic neutral sugar in the cell wall and showed dramatic solubilization late in ripening.

View Article and Find Full Text PDF

Antioxidants present in fruits and vegetables may help prevent some chronic diseases such as cancer, arthritis, and heart disease. Tomatoes provide a major contribution to human dietary nutrition because of their widespread consumption in fresh and processed forms. A tomato introgression line population that combines single chromosomal segments introgressed from the wild, green fruited species Lycopersicon pennellii in the background of the domesticated tomato, Lycopersicon esculentum, was used to identify quantitative trait loci (QTL) for nutritional and antioxidant contents.

View Article and Find Full Text PDF

Background: Pemphigoid gestationis (PG) is a rare pregnancy-associated subepidermal immunobullous disease that targets hemidesmosomal proteins, particularly BP180. Clinically, PG can resemble the eruption known as polymorphic urticarial papules and plaques of pregnancy (PUPPP), and accurate differentiation between these 2 pruritic pregnancy dermatoses has important implications for fetal and maternal prognoses. Results of epitope mapping studies show that IgG autoantibodies in up to 90% of PG serum samples target the well-defined membrane-proximal NC16a domain of BP180.

View Article and Find Full Text PDF

SUMMARY Polygalacturonase-inhibiting proteins (PGIPs) are plant cell-wall proteins that specifically inhibit fungal endo-polygalacturonases (PGs) that contribute to the aggressive decomposition of susceptible plant tissues. The inhibition of fungal PGs by PGIPs suggests that PGIPs have a role in plant tolerance to fungal infections and this has been observed in transgenic plants expressing PGIPs. Xylella fastidiosa, the causal agent of Pierce's disease (PD) in grapevines, has genes that encode cell-wall-degrading enzymes, including a putative PG.

View Article and Find Full Text PDF

Polygalacturonase inhibiting protein (PGIP) was extracted from 'Oroblanco' grapefruit type (triploid pummelo-grapefruit) albedo tissue, purified and partially characterized. Extraction was carried out at 4 degrees C with a high ionic strength extraction buffer. After dialysis and concentration by ultrafiltration the extract was chromatographed on concanavalin A-Sepharose.

View Article and Find Full Text PDF

Tomatoes are grown for fresh consumption or for processing of the fruit. Some ripening-associated processes of the fruit can either contribute to or degrade attributes associated with both fresh and processing quality. For example, cell wall disassembly is associated with loss of fresh fruit firmness as well as with loss of processed tomato product viscosity.

View Article and Find Full Text PDF