Metal-organic frameworks (MOFs) are porous 3-dimensional crystalline structures that have shown promise for a variety of applications including adsorption, catalysis, and sensing. Modern warfare has placed chemical warfare agent (CWA) destruction at the forefront of chemical applications for MOFs. However, experiments involving CWAs can only be performed by a small number of highly trained individuals as they are extremely dangerous and available only to certain laboratories.
View Article and Find Full Text PDFPaper spray mass spectrometry has been shown to successfully analyze chemical warfare agent (CWA) simulants. However, due to the volatility differences between the simulants and real G-series (i.e.
View Article and Find Full Text PDFFor the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are versatile materials highly regarded for their porous nature. Depending on the synthetic method, various guest molecules may remain in the pores or can be systematically loaded for various reasons. Herein, we present a study that explores the effect of guest molecules on the adsorption and reactivity of the MOF in both the gas phase and solution.
View Article and Find Full Text PDFA fullerene-based photosensitizer is incorporated postsynthetically into a Zr -based MOF, NU-1000, for enhanced singlet oxygen production. The structural organic linkers in the MOF platform also act as photosensitizers which contribute to the overall generation of singlet oxygen from the material under UV irradiation. The singlet oxygen generated by the MOF/fullerene material is shown to oxidize sulfur mustard selectively to the less toxic bis(2-chloroethyl)sulfoxide with a half-life of only 11 min.
View Article and Find Full Text PDFWe used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings.
View Article and Find Full Text PDFRecently, polymer-metal-organic frameworks (polyMOFs) were reported as a new class of hybrid porous materials that combine advantages of both organic polymers and crystalline MOFs. Herein, we report a bridging coligand strategy to prepare new types of polyMOFs, demonstrating that polyMOFs are compatible with additional MOF architectures besides that of the earlier reported IRMOF-1 type polyMOF. Gas sorption studies revealed that these polyMOF materials exhibited relatively high CO2 sorption but very low N2 sorption, making them promising materials for CO2/N2 separations.
View Article and Find Full Text PDF