We employed two compelling and distinct methods, Fourier Transform Infrared Spectroscopy (FTIR) and Ramped Pyrolysis Oxidation (Ramped PyrOx), to examine the quality of organic matter (OM) stored in four peatlands located along a latitudinal gradient (Tropical (4˚N), Subtropical (27˚N), Boreal (48˚N), and Polar (68˚N)). FTIR was used to quantify the relative abundance of carbohydrates, a relatively labile compound class, and aromatics, which are more recalcitrant, in a sample set of four peat cores. These samples were then prepared using Ramped PyrOx, a second, independent method of determining OM quality that mimics the natural diagenetic maturation of OM that would take place over long timescales.
View Article and Find Full Text PDFHadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386.
View Article and Find Full Text PDFBackground: Dementia with Lewy bodies (DLB) is the second most common form of dementia. Current symptomatic treatment with medications remains inadequate. Deep brain stimulation of the nucleus basalis of Meynert (NBM DBS) has been proposed as a potential new treatment option in dementias.
View Article and Find Full Text PDFPerylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735-1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene.
View Article and Find Full Text PDFHydrocarbons released during the Deepwater Horizon (DWH) oil spill weathered due to exposure to oxygen, light, and microbes. During weathering, the hydrocarbons' reactivity and lability was altered, but it remained identifiable as "petrocarbon" due to its retention of the distinctive isotope signatures (14C and 13C) of petroleum. Relative to the initial estimates of the quantity of oil-residue deposited in Gulf sediments based on 2010-2011 data, the overall coverage and quantity of the fossil carbon on the seafloor has been attenuated.
View Article and Find Full Text PDFSediments in deep ocean trenches may contain crucial information on past earthquake history and constitute important sites of carbon burial. Here we present C data on bulk organic carbon (OC) and its thermal decomposition fractions produced by ramped pyrolysis/oxidation for a core retrieved from the >7.5 km-deep Japan Trench.
View Article and Find Full Text PDFHumans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here, we develop and evaluate C records for two complementary PyC molecular markers, benzene polycarboxylic acids (BPCAs) and polycyclic aromatic hydrocarbons (PAHs), preserved in aquatic sediments from a suburban and a remote catchment in the United States (U.
View Article and Find Full Text PDFMotivated by the need to develop clean, high purity preparative enrichments of individual compounds for micro-scale compound-specific natural abundance isotope and radiocarbon ((14)C) analyses, we describe a new, two-dimensional, heart-cutting, low-bleed, three-oven, single GC preparative system, demonstrate its resolving capabilities as applied to a typically complex environmental sample matrix, and investigate the robustness with which it preserves the authigenic (13)C/(12)C and (14)C/(12)C ratios of individual compounds it targets for preparative enrichment. The system is comprised of a programmable temperature vaporizing (PTV) inlet, a single GC oven, two modular, door-mounted, resistively heated low thermal mass (LTM) columns, a preparative fraction collector (PFC), and a Deans pneumatic switching device which facilitates heart-cutting between the system's 1° and 2° chromatographic dimensions. Further, the system's inlet and trapping parameters are optimized for the efficient preparative enrichment of the methyl ether and ester derivatives of the lignin phenol compound class.
View Article and Find Full Text PDFThe reliability of chronology is a prerequisite for meaningful paleoclimate reconstructions from sedimentary archives. The conventional approach of radiocarbon dating bulk organic carbon in lake sediments is often hampered by the old carbon effect, i.e.
View Article and Find Full Text PDFThe relevance of both modern and fossil carbon contamination as well as isotope fractionation during preparative gas chromatography for compound-specific radiocarbon analysis (CSRA) was evaluated. Two independent laboratories investigated the influence of modern carbon contamination in the sample cleanup procedure and preparative capillary gas chromatography (pcGC) of a radiocarbon-dead 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) reference. The isolated samples were analyzed for their 14C/12C ratio by accelerator mass spectrometry.
View Article and Find Full Text PDFTo determine the relative inputs of polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC) in environmental samples from the combustion of fossil fuels and biomass, we have developed two independent analytical methods for determining the 14C abundance of PAHs and BC. The 5730 yr half-life of 14C makes it an ideal tracer for identifying combustion products derived from fossil fuels (14C-free) versus those stemming from modern biomass (contemporary 14C). The 14C abundance of PAHs in several environmental Standard Reference Materials was measured by accelerator mass spectrometry after extraction and then purification by high-performance liquid chromatography and preparative capillary gas chromatography.
View Article and Find Full Text PDF