Publications by authors named "Ann M van Loey"

The volatile profiles of Brussels sprouts and leek, as affected by pretreatment combined with frozen storage were analyzed in the present work. The data revealed that, notwithstanding the effect upon pretreatment seemed to be major compared to the effect upon frozen storage, the latter was existent. Pretreatment yielded volatile compounds that could be associated with (bio)chemical reaction pathways in both vegetables.

View Article and Find Full Text PDF

and vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable.

View Article and Find Full Text PDF
Article Synopsis
  • Vegetables undergo processing before consumption, and their functional properties continue to change during digestion due to conditions like heat, pH changes, and enzymes.
  • This study focused on the stability and bioaccessibility of key nutrients in Brussels sprouts and leeks during simulated digestion, revealing that water-soluble compounds remained stable but vitamin C significantly decreased.
  • While water-soluble compounds were fully absorbable, lipid-soluble nutrients showed varied bioaccessibility, ranging from 26% to 81%.
View Article and Find Full Text PDF

Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables.

View Article and Find Full Text PDF

Processing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents.

View Article and Find Full Text PDF

Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study.

View Article and Find Full Text PDF

In the current study, the effect of different particle size reduction techniques, namely high-pressure homogenization (HPH) and cryogenic ball milling (CBM), on the microstructural and texturizing properties of the tomato acid-unextractable fraction (AcUF) in suspension was studied. Partial pectin depletion was performed by nitric acid pectin extraction on the alcohol-insoluble residue. In the absence of the aforementioned mechanical treatments, the partially pectin-depleted material, i.

View Article and Find Full Text PDF

In the current study, the texturizing properties of partially pectin-depleted cell wall material (CWM) of apple, carrot, onion and pumpkin, and the potential of functionalization by high-pressure homogenization (HPH) were addressed. This partially pectin-depleted CWM was obtained as the unextractable fraction after acid pectin extraction (AcUF) on the alcohol-insoluble residue. Chemical analysis was performed to gain insight into the polysaccharide composition of the AcUF.

View Article and Find Full Text PDF

Chickpea flours are an interesting multifunctional ingredient for different food products. This study investigated the potential of differently processed chickpea flours as alternative thickening agents in an instant soup recipe, replacing potato starch. Dry instant soup powders were compared on bulk density and powder flowability, whereas prepared liquid instant soups were studied in terms of rheological behaviour (as influenced by microstructure) and volatile composition.

View Article and Find Full Text PDF

The increasing need for sustainable food choices places a demand on developing palatable foods from lower impact production and with a suitable shelf-life. In this context, knowledge of the sensory properties of whole sterilised chickpeas is required to be able to make them more attractive to the consumers. The sensory quality of chickpeas is largely dependent on the aroma and flavour, which can be influenced by storage conditions.

View Article and Find Full Text PDF

In the context of the increasing interest in natural food ingredients, the emulsifying and emulsion-stabilizing properties of three rhamnogalacturonan-rich apple pectin-derived samples were assessed by evaluating a range of physicochemical properties. An apple pectin (AP74) was structurally modified by a β-eliminative reaction to obtain a RG-I-rich pectin sample (AP-RG). Subsequent acid hydrolysis of AP-RG led to the generation of pectin material with partially removed side chains (in particular arabinose depleted) (AP-RG-hydrolyzed), thus exhibiting differences in rhamnose, arabinose, and galactose in comparison to AP-RG.

View Article and Find Full Text PDF

In this study, tailored-made citrus pectin-derived compounds were produced through controlled enzymatic and/or chemical modifications of commercial citrus pectin with different degrees of methylesterification (DM) and similar average molecular weight (M). In the first treatment, degradation of the citrus pectin (CP) materials by endo-polygalacturonase (EPG) yielded pectins with average M's (between 2 and 60 kDa). Separation and identification of the oligosaccharide fraction present in these samples, revealed the presence of non-methylesterified galacturonic acid oligomers with degree of polymerization (DP) 1-5.

View Article and Find Full Text PDF

In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the comparison of pectin yield and the compositional and structural properties of the extracted pectin and residual cell wall material obtained. On the one hand, pectin is extracted stepwise using hot water, chelating agents and low-alkaline conditions targeting fractionation of the pectin population.

View Article and Find Full Text PDF

For the first time, a model system approach was combined with H NMR fingerprinting in studying non-enzymatic browning (NEB) of pasteurized shelf-stable orange juice during storage. Various NEB precursors were used individually or in combinations to formulate simple or complex model systems, respectively, in citric acid buffer. Based on orange juice composition, ascorbic acid, sugars (sucrose, glucose and fructose) and amino acids (proline, arginine, asparagine, aspartic acid, serine and glutamic acid) were selected as the precursors for the model systems.

View Article and Find Full Text PDF

The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively.

View Article and Find Full Text PDF

Nonenzymatic browning during storage of pasteurized shelf-stable orange juice causes a major color deterioration, which negatively affects consumer acceptance of the juice. This study, for the first time, investigated on a kinetic basis the effect of pH and suspected nonenzymatic browning reaction precursors such as ascorbic acid, fructose, and arginine on nonenzymatic browning during accelerated storage (42 °C) using an orange-juice-based model system. The results showed that lowering the pH of the model juice system from 3.

View Article and Find Full Text PDF

For the first time in literature, this study revealed the participation of polymeric components of orange juice cloud and pulp (such as proteins, arabinogalactan proteins, or protein-pectin complexes) during nonenzymatic browning. In a quest to better understand the nonenzymatic browning of shelf-stable orange juice during storage, the juice was fractionated into different fractions depending on the solubility in water/ethanol and the obtained fractions were characterized. The results showed that brown compounds that were formed during storage of orange juice were distributed over water insoluble (pulp), ethanol insoluble (cloud), and ethanol soluble (serum) fractions.

View Article and Find Full Text PDF
Article Synopsis
  • Microalgae are special tiny plants that are healthy and help make food tasty and have good textures.
  • They have important ingredients like proteins and sugars that can make food thick and full of nutrients.
  • Using all parts of microalgae in food could reduce the need for extra ingredients, making food healthier and more sustainable.
View Article and Find Full Text PDF

The world faces challenges that require sustainable solutions: food and nutrition insecurity; replacement of animal-based protein sources; and increasing demand for convenient, nutritious, and health-beneficial foods; as well as functional ingredients. The irrefutable potential of pulses as future sustainable food systems is undermined by the hardening phenomenon that develops upon their storage under adverse conditions of temperature and relative humidity. Occurrence of this phenomenon indicates storage instability.

View Article and Find Full Text PDF

Long-term storage of common beans leads to loss of cooking quality and an ill-defined solution, appropriate storage, is recommended. Therefore, the polymer science theory of glasses that hypothesizes stability of a system below its glass transition temperature (T) was applied to determine bean stability during storage in relation to cooking behavior. Since composition influences T, powders of cotyledons and seed coats in addition to whole beans were equilibrated above different saturated salt solutions in order to generate materials with different moisture contents.

View Article and Find Full Text PDF

Beans age during storage leading to prolonged cooking times. Chemical reactions that occur during cooking lead to volatile production and flavor generation. Whereas few studies profiled the volatile fingerprint of either non-cooked beans or beans cooked for a specific time, this study explored the evolution of volatiles through headspace fingerprinting of beans cooked at 95 °C to different extents.

View Article and Find Full Text PDF

Dynamics of pectin extractability in cotyledons and seed coats were explored for mechanistic insight into pectin changes due to aging and cooking of beans. In addition, changes in mineral distribution during cooking were determined in order to investigate their retention in the matrix. Pre-soaked fresh and aged beans were cooked in demineralized water for different times and the cotyledons, seed coats and cooking water were lyophilized.

View Article and Find Full Text PDF

Pectin is an anionic cell wall polysaccharide which is known to interact with divalent cations via its nonmethylesterified galacturonic acid units. Due to its cation-binding capacity, extracted pectin is frequently used for several purposes, such as a gelling agent in food products or as a biosorbent to remove toxic metals from waste water. Pectin can, however, possess a large variability in molecular structure, which influences its cation-binding capacity.

View Article and Find Full Text PDF

Cell wall related polysaccharides of the red microalga Porphyridium sp. were shown to be a promising source of new sustainable thickening agents. Isolated extracellular polysaccharides (EPS) consisted of high molecular weight polymers, showing a higher intrinsic viscosity compared to several commercially used hydrocolloids.

View Article and Find Full Text PDF

Microalgae are a promising and sustainable source for enhancing the nutritional value of food products. Moreover, incorporation of the total biomass might contribute to the structural properties of the enriched food product. Our previous study demonstrated the potential of Porphyridium cruentum and Chlorella vulgaris as multifunctional food ingredients, as they displayed interesting rheological properties after applying a specific combination of mechanical and thermal processing.

View Article and Find Full Text PDF