Publications by authors named "Ann M Stevens"

Shellfish, such as the Eastern oyster (Crassostrea virginica), are an important agricultural commodity. Previous research has demonstrated the importance of the native microbiome of oysters against exogenous challenges by non-native pathogens. However, the taxonomic makeup of the oyster microbiome and the impact of environmental factors on it are understudied.

View Article and Find Full Text PDF

Prevalence of seafood-borne gastroenteritis caused by the human pathogen Vibrio parahaemolyticus is increasing globally despite current preventative measures. The United States Centers for Disease Control have designated V. parahaemolyticus as a reportable emerging human pathogen.

View Article and Find Full Text PDF

The bacterial phytopathogen subsp. causes leaf blight and Stewart's wilt disease in susceptible corn varieties. A previous RNA-Seq study examined gene expression patterns during late-stage infection in the xylem, and a Tn-Seq study using a mutant library revealed genes essential for colonization of the xylem.

View Article and Find Full Text PDF

Sustainable aquaculture practices can help meet the increasing human demand for seafood, while easing pressures on natural fish populations. Studies aimed at increasing fish production in aquaculture have included supplementary dietary probiotics that often promote general health and enhanced growth rates by altering the microbiome of the host. Steelhead trout () is anadromous, like salmon, and it is a subspecies of rainbow trout capable of rapid growth, making it an attractive fish to the aquaculture industry.

View Article and Find Full Text PDF

A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup.

View Article and Find Full Text PDF

Misconceptions, or alternative conceptions, are incorrect understandings that students have incorporated into their prior knowledge. The goal of this study was the identification of misconceptions in microbiology held by undergraduate students upon entry into an introductory, general microbiology course. This work was the first step in developing a microbiology concept inventory based on the American Society for Microbiology's Recommended Curriculum Guidelines for Undergraduate Microbiology.

View Article and Find Full Text PDF

If we are to teach effectively, tools are needed to measure student learning. A widely used method for quickly measuring student understanding of core concepts in a discipline is the concept inventory (CI). Using the American Society for Microbiology Curriculum Guidelines (ASMCG) for microbiology, faculty from 11 academic institutions created and validated a new microbiology concept inventory (MCI).

View Article and Find Full Text PDF

The bacterium Pantoea stewartii ssp. stewartii causes Stewart's wilt disease in corn. Pantoea stewartii is transmitted to plants via corn flea beetles, where it first colonizes the apoplast causing water-soaked lesions, and then migrates to the xylem and forms a biofilm that blocks water transport.

View Article and Find Full Text PDF

subsp. is a Gram-negative proteobacterium that causes leaf blight and Stewart's wilt disease in corn. Quorum sensing (QS) controls bacterial exopolysaccharide production that blocks water transport in the plant xylem at high bacterial densities during the later stage of the infection, resulting in wilt.

View Article and Find Full Text PDF

The phytopathogen subsp. DC283 causes Stewart's wilt disease in corn after transmission from the corn flea beetle insect vector. Here, we report that the complete annotated genome of DC283 has been fully assembled into one circular chromosome, 10 circular plasmids, and one linear phage.

View Article and Find Full Text PDF

Misconceptions, also known as alternate conceptions, about key concepts often hinder the ability of students to learn new knowledge. Concept inventories (CIs) are designed to assess students' understanding of key concepts, especially those prone to misconceptions. Two-tiered CIs include prompts that ask students to explain the logic behind their answer choice.

View Article and Find Full Text PDF

subsp. is a bacterial phytopathogen that causes Stewart's wilt disease in corn. It uses quorum sensing to regulate expression of some genes involved in virulence in a cell density-dependent manner as the bacterial population grows from small numbers at the initial infection site in the leaf apoplast to high cell numbers in the xylem where it forms a biofilm.

View Article and Find Full Text PDF

The Gram-negative proteobacterium Pantoea stewartii subsp. stewartii causes wilt disease in corn plants. Wilting is primarily due to bacterial exopolysaccharide (EPS) production that blocks water transport in the xylem during the late stages of infection.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is an emerging world-wide human pathogen that is associated with food-borne gastroenteritis when raw or undercooked seafood is consumed. Expression of virulence factors in this organism is modulated by the phenomenon known as quorum sensing, which permits differential gene regulation at low versus high cell density. The master regulator of quorum sensing in V.

View Article and Find Full Text PDF

Characterization of bacterial innate and engineered cooperative behavior, regulated through chemical signaling in a process known as quorum sensing, is critical to development of a myriad of bacteria-enabled systems including biohybrid drug delivery systems and biohybrid mobile sensor networks. Here, we demonstrate, for the first time, that microfluidic diffusive mixers can be used for spatiotemporally high-throughput characterization of bacterial quorum-sensing response. Using this batch characterization method, the quorum-sensing response in Escherichia coli MG1655, transformed with a truncated lux operon from Vibrio fischeri, in the presence of 1-100 nM exogenous acyl-homoserine lactone molecules has been quantified.

View Article and Find Full Text PDF

During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR.

View Article and Find Full Text PDF

Pantoea stewartii subsp. stewartii is a proteobacterium that causes Stewart's wilt disease in corn plants. The bacteria form a biofilm in the xylem of infected plants and produce capsule that blocks water transport, eventually causing wilt.

View Article and Find Full Text PDF

The proteobacterium Pantoea stewartii subsp. stewartii causes Stewart's wilt disease in maize when it colonizes the xylem and secretes large amounts of stewartan, an exopolysaccharide. The success of disease pathogenesis lies in the timing of bacterial virulence factor expression through the different stages of infection.

View Article and Find Full Text PDF

The number of inflammatory gastroenteritis outbreaks due to the food-borne pathogen is rising sharply worldwide and in the United States in particular. Here we report the complete, annotated genome sequence of the prepandemic strain BB22OP and make some initial comparisons to the complete genome sequence for pandemic strain RIMD2210633.

View Article and Find Full Text PDF

The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication.

View Article and Find Full Text PDF

The quorum-sensing and CsrA regulons of Vibrios control overlapping cellular functions during growth. Hence, the potential exists for regulatory network interactions between the pathways that enable them to be coordinately controlled. In Vibrio cholerae, CsrA indirectly modulates the activity of LuxO in the quorum-sensing signaling pathway.

View Article and Find Full Text PDF

The quorum-sensing regulator EsaR from Pantoea stewartii subsp. stewartii is a LuxR homologue that is inactivated by acyl-homoserine lactone (AHL). In the corn pathogen P.

View Article and Find Full Text PDF

In Pantoea stewartii subsp. stewartii, two regulatory proteins are key to the process of cell-cell communication known as quorum sensing: the LuxI and LuxR homologues EsaI and EsaR. Most LuxR homologues function as activators of transcription in the presence of their cognate acylated homoserine lactone (AHL) signal.

View Article and Find Full Text PDF