Publications by authors named "Ann M Simon"

Introduction: Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • The article DOI: 10.3389/fresc.2023.1203545 has been corrected to address errors or inaccuracies.
  • This correction ensures that the research findings and conclusions are accurately represented.
  • Readers are encouraged to refer to the updated version for the most reliable information.
View Article and Find Full Text PDF

Recently, hybrid prosthetic knees, which can combine the advantages of passive and active prosthetic knees, have been proposed for individuals with a transfemoral amputation. Users could potentially take advantage of the passive knee mechanics during walking and the active power generation during stair ascent. One challenge in controlling the hybrid knees is accurate gait mode prediction for seamless transitions between passive and active modes.

View Article and Find Full Text PDF

Powered prosthetic knees and ankles have the capability of restoring power to the missing joints and potential to provide increased functional mobility to users. Nearly all development with these advanced prostheses is with individuals who are high functioning community level ambulators even though limited community ambulators may also receive great benefit from these devices. We trained a 70 year old male participant with a unilateral transfemoral amputation to use a powered knee and powered ankle prosthesis.

View Article and Find Full Text PDF

Background: Despite the growing availability of multifunctional prosthetic hands, users' control and overall functional abilities with these hands remain limited. The combination of pattern recognition control and targeted muscle reinnervation (TMR) surgery, an innovative technique where amputated nerves are transferred to reinnervate new muscle targets in the residual limb, has been used to improve prosthesis control of individuals with more proximal upper limb amputations (i.e.

View Article and Find Full Text PDF

With the increasing availability of more advanced prostheses individuals with a transradial amputation can now be fit with single to multi-degree of freedom hands. Reliable and accurate control of these multi-grip hands still remains challenging. This is the first multi-user study to investigate at-home control and use of a multi-grip hand prosthesis under pattern recognition and direct control.

View Article and Find Full Text PDF

Background: Despite prosthetic technology advancements, individuals with transfemoral amputation have compromised temporal-spatial gait parameters and high metabolic requirements for ambulation. It is unclear how adding mass at different locations on a transfemoral prosthesis might affect these outcomes. Research question Does walking with mass added at different locations on a transfemoral prosthesis affect temporal-spatial gait parameters and metabolic requirements compared to walking with no additional mass?

Methods: Fourteen participants with unilateral transfemoral amputations took part.

View Article and Find Full Text PDF

Prosthetic knees available to individuals with transfemoral amputation seek to restore functional ability to the user. Passive prosthetic knees are lightweight but can restore only limited, dissipative ambulation activities whereas active knees can provide energy to restore additional ambulation activities such as stair climbing and standing up from a chair. Semi-active prosthetic devices aim to only power a subset of activities and use passive components and control when that power is not necessary.

View Article and Find Full Text PDF

Limb loss at the transfemoral or knee disarticulation level results in a significant decrease of mobility. Powered lower limb prostheses have the potential to provide increased functional mobility and return individuals to activities of daily living that are limited due to their amputation. Providing power at the knee and/or ankle, new and innovative training is required for the amputee and the clinician to understand the capabilities of these advanced devices.

View Article and Find Full Text PDF

Powered prosthetic legs are becoming a promising option for amputee patients. However, developing safe, robust, and intuitive control strategies for powered legs remains one of the greatest challenges. Although a variety of control strategies have been proposed, creating and fine-tuning the system parameters is time-intensive and complicated when more activities need to be restored.

View Article and Find Full Text PDF

Patient preference of lower limb prosthesis behavior informally guides clinical decision making, and may become increasingly important for tuning new robotic prostheses. However, the processes for quantifying preference are still being developed, and the strengths and weaknesses of preference are not adequately understood. The present study sought to characterize the reliability (consistency) of patient preference of alignment during level-ground walking, and determine the patient-preferred ankle angle for ascent and descent of a 10° ramp, with implications for the design and control of robotic prostheses.

View Article and Find Full Text PDF

In individuals with lower-limb amputations, robotic prostheses can increase walking speed, and reduce energy use, the incidence of falls and the development of secondary complications. However, safe and reliable prosthetic-limb control strategies for robust ambulation in real-world settings remain out of reach, partly because control strategies have been tested with different robotic hardware in constrained laboratory settings. Here, we report the design and clinical implementation of an integrated robotic knee-ankle prosthesis that facilitates the real-world testing of its biomechanics and control strategies.

View Article and Find Full Text PDF

Background: State-of-the-art bionic hands incorporate hi-tech devices which try to overcome limitations of conventional single grip systems. Unfortunately, their complexity often limits mechanical robustness and intuitive prosthesis control. Recently, the translation of neuroscientific theories (i.

View Article and Find Full Text PDF

Intent recognition is a data-driven alternative to expert-crafted rules for triggering transitions between pre-programmed activity modes of a powered leg prosthesis. Movement-related signals from prosthesis sensors detected prior to movement completion are used to predict the upcoming activity. Usually, training data comprised of labeled examples of each activity are necessary; however, the process of collecting a sufficiently large and rich training dataset from an amputee population is tedious.

View Article and Find Full Text PDF

Although more multi-articulating hand prostheses have become commercially available, replacing a missing hand remains challenging from a control perspective. This study investigated myoelectric direct control and pattern recognition home use of a multi-articulating hand prosthesis for individuals with a transradial amputation. Four participants were fitted with an i-limb Ultra Revolution hand and a Coapt COMPLETE CONTROL system.

View Article and Find Full Text PDF

Background: Active upper-limb prostheses are used to restore important hand functionalities, such as grasping. In conventional approaches, a pattern recognition system is trained over a number of static grasping gestures. However, training a classifier in a static position results in lower classification accuracy when performing dynamic motions, such as reach-to-grasp.

View Article and Find Full Text PDF

Pattern recognition algorithms have been used to control powered lower limb prostheses because they are capable of identifying the intent of the amputee user and therefore can provide a method for seamlessly transitioning between the different locomotion modes of the prosthesis. However, one major limitation of current algorithms is that they require subject-specific data from the individual user. These data are difficult and time-consuming to collect and consequently these algorithms do not generalize well across users.

View Article and Find Full Text PDF

Powered prosthetic legs are capable of improving the gait of lower limb amputees. Pattern recognition systems for these devices allow amputees to transition between different locomotion modes in a way that is seamless and transparent to the user. However, the potential of these systems is diminished because they require large amounts of training data that is burdensome to collect.

View Article and Find Full Text PDF

Powered knee and ankle prostheses have the potential to improve the mobility of individuals with a lower limb amputation. As the number of different ambulation modes the prosthesis can be configured for increases, so too does the challenge of how to best transition the prosthesis between these modes. Pattern recognition systems have been suggested as a means to provide seamless and natural transitions, although error rates need to be reduced for these systems to be clinical viable.

View Article and Find Full Text PDF

Powered lower limb prostheses can assist users in a variety of ambulation modes by providing knee and/or ankle joint power. This study's goal was to develop a flexible control system to allow users to perform a variety of tasks in a natural, accurate, and reliable way. Six transfemoral amputees used a powered knee-ankle prosthesis to ascend/descend a ramp, climb a 3- and 4-step staircase, perform walking and standing transitions to and from the staircase, and ambulate at various speeds.

View Article and Find Full Text PDF

Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees.

View Article and Find Full Text PDF

Real-time simultaneous pattern recognition (PR) control of multiple degrees of freedom (DOF) has been demonstrated using a set of parallel linear discriminant analysis (LDA) classifiers trained with both discrete (1-DOF) and simultaneous (2-DOF) motion data. However, this training method presents a clinical challenge, requiring large amounts of data necessary to re-train the system. This study presents a parallel classifier training method that aims to reduce the training burden.

View Article and Find Full Text PDF

Objective: To test a new user-modulated control strategy that enables improved control of a powered knee-ankle prosthesis during sit-to-stand and stand-to-sit movements.

Design: Within-subject comparison study.

Setting: Gait laboratory.

View Article and Find Full Text PDF

Background: Recovering from trips is challenging for transfemoral amputees, and attempts often result in falls. Better understanding of the effects of the sensory-motor deficits brought by amputation and the functional limitations of prosthetic devices could help guide therapy and fall prevention mechanisms in prostheses. However, how transfemoral amputees attempt to recover from trips on the sound and prosthesis sides throughout swing phase is poorly understood.

View Article and Find Full Text PDF