Publications by authors named "Ann M Hirt"

Purpose: Several magnetic resonance imaging (MRI) techniques exploit the difference in magnetic susceptibilities between tissues, but systematic measurements of tissue susceptibility are lacking. Furthermore, there is the question as to whether chemical fixation that is used for ex vivo MRI studies, affects the magnetic properties of the tissue. Here, we determined the magnetic susceptibility and water content of fresh and chemically fixed mouse tissue.

View Article and Find Full Text PDF

The brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the "mortar" phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities.

View Article and Find Full Text PDF

Metachronal waves commonly exist in natural cilia carpets. These emergent phenomena, which originate from phase differences between neighbouring self-beating cilia, are essential for biological transport processes including locomotion, liquid pumping, feeding, and cell delivery. However, studies of such complex active systems are limited, particularly from the experimental side.

View Article and Find Full Text PDF

Control over particle size, size distribution, and colloidal stability are central aims in producing functional nanomaterials. Recently, biomimetic approaches have been successfully used to enhance control over properties in the synthesis of those materials. Magnetotactic bacteria produce protein-stabilized magnetite away from its thermodynamic equilibrium structure.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components.

View Article and Find Full Text PDF

Elegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high-performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells.

View Article and Find Full Text PDF

Contrast agents for magnetic resonance imaging (MRI) are essential for evidential visualization of soft tissues pathologies. Contrast-enhanced MRI can be carried out with T- and T-weighted sequences that require as contrast agents paramagnetic and superparamagnetic materials, respectively. The T-weighted imaging is frequently preferred over T-, as it induces a bright contrast for sharper image analysis and allows more rapid image acquisition.

View Article and Find Full Text PDF

Diseased cell treatment by heating with magnetic nanoparticles is hindered by their required high concentrations. A clear relationship between heating efficiency and magnetic properties of nanoparticles has not been attained experimentally yet due to limited availability of magnetic nanoparticles with varying size and composition. Here, versatile flame aerosol technology is used for the synthesis of 21 types of ferro-/ferrimagnetic nanocrystals with varying composition, size, and morphology for hyperthermia and thermoablation therapy.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) and magnetic particle imaging (MPI) are powerful methods in the early diagnosis of diseases. Both imaging techniques utilize magnetic nanoparticles that have high magnetic susceptibility, strong saturation magnetization, and no coercivity. FeraSpin R and its fractionated products have been studied for their imaging performances; however, a detailed magnetic characterization in their immobilized state is still lacking.

View Article and Find Full Text PDF

We describe the synthesis of hybrid magnetic ellipsoidal nanoparticles that consist of a mixture of two different iron oxide phases, hematite (α-FeO) and maghemite (γ-FeO), and characterize their magnetic field-driven self-assembly. We demonstrate that the relative amount of the two phases can be adjusted in a continuous way by varying the reaction time during the synthesis, leading to strongly varying magnetic properties of the particles. Not only does the saturation magnetization increase dramatically as the composition of the spindles changes from hematite to maghemite, but also the direction of the induced magnetic moment changes from being parallel to the short axis of the spindle to being perpendicular to it.

View Article and Find Full Text PDF

Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals.

View Article and Find Full Text PDF

We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction ϕ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed.

View Article and Find Full Text PDF

Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g.

View Article and Find Full Text PDF

Magnetite is an iron oxide found in rocks. Its magnetic properties are used for paleoclimatic reconstructions. It can also be synthesized in the laboratory to exploit its magnetic properties for bio- and nanotechnological applications.

View Article and Find Full Text PDF

Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy.

View Article and Find Full Text PDF

We extend the commonly used synthesis strategies for responsive microgels to the design of novel multiresponsive and multifunctional nanoparticles that combine inorganic magnetic, metallic/catalytic and thermoresponsive organic moieties. Magnetic responsiveness is implemented through the integration of silica-coated maghemite nanoparticles into fluorescently labeled crosslinked poly(N-isopropylmethacrylamide) microgels. These particles are then employed as templates for the in situ reduction of catalytically active gold nanoparticles.

View Article and Find Full Text PDF

Anisotropic and hierarchical structures are bound in nature and highly desired in engineered materials, due to their outstanding functions and performance. Mimicking such natural features with synthetic materials and methods has been a highly active area of research in the last decades. Unlike these methods, we use the native biomaterial wood, with its intrinsic anisotropy and hierarchy as a directional scaffold for the incorporation of magnetic nanoparticles inside the wood material.

View Article and Find Full Text PDF

We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite.

View Article and Find Full Text PDF

The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm) or even multi-domain behavior (> 80 nm). The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria.

View Article and Find Full Text PDF

A stimuli-responsive material is synthesized that combines the actuation potential of liquid-crystalline elastomers with the anisotropic magnetic properties of ellipsoidal iron oxide nanoparticles. The resulting nanocomposite exhibits unique shape-memory features with magnetic information, which can be reversibly stored and erased via parameters typical of soft materials, such as high deformations, low stresses, and liquid-crystalline smectic-isotropic transition temperatures.

View Article and Find Full Text PDF

The structure of columnar-jointed lava flows and intrusions has fascinated people for centuries and numerous hypotheses on the mechanisms of formation of columnar jointing have been proposed. In cross-section, weakly developed semicircular internal structures are a near ubiquitous feature of basalt columns. Here we propose a melt-migration model, driven by crystallization and a coeval specific volume decrease inside cooling and solidifying columns, which can explain the observed macroscopic features in columnar-jointed basalts.

View Article and Find Full Text PDF

Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, diagnosis and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO-coated, Janus-like Ag/FeO nanoparticles are prepared by one-step, scalable flame aerosol technology.

View Article and Find Full Text PDF

Iron is a central element in the metabolism of normal and malignant cells. Abnormalities in iron and ferritin expression have been observed in many types of cancer. Interest in characterizing iron compounds in the human brain has increased due to advances in determining a relationship between excess iron accumulation and neurological and neurodegenerative diseases.

View Article and Find Full Text PDF

Excess iron accumulation in the brain has been shown to be related to a variety of neurodegenerative diseases. However, identification and characterization of iron compounds in human tissue is difficult because concentrations are very low. For the first time, a combination of low temperature magnetic methods was used to characterize iron compounds in tumour tissue from patients with mesial temporal lobe epilepsy (MTLE).

View Article and Find Full Text PDF