Publications by authors named "Ann L Menefee"

Numerous steady-state kinetic studies have examined the complex catalytic reaction mechanism of the multifunctional enzyme, pyruvate carboxylase (PC). Through initial velocity, product inhibition, isotopic exchange and alternate substrate experiments, early investigators established that PC catalyzes the MgATP-dependent carboxylation of pyruvate by HCO3 (-) through a nonclassical sequential Bi Bi Uni Uni reaction mechanism. This review surveys previous steady-state kinetic investigations of PC and evaluates the proposed hypotheses concerning the overall catalytic mechanism, nonlinear kinetics and active site coupling in the context of recent structural and mutagenic analyses of this multifunctional enzyme.

View Article and Find Full Text PDF

While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain.

View Article and Find Full Text PDF

The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353).

View Article and Find Full Text PDF

We have investigated the reaction of glutamate mutase with the glutamate analogue, 2-thiolglutarate. In the standard assay, 2-thiolglutarate behaves as a competitive inhibitor with a Ki of 0.05 mM.

View Article and Find Full Text PDF

Enolase is a dimeric enzyme that catalyzes the interconversion of 2-phospho-D-glycerate and phosphoenolpyruvate. This reversible dehydration is effected by general acid-base catalysis that involves, principally, Lys345 and Glu211 (numbering system of enolase 1 from yeast). The crystal structure of the inactive E211Q enolase shows that the protein is properly folded.

View Article and Find Full Text PDF

Phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus (LbPFK) has been reported to be a nonallosteric analogue of phosphofructokinase from Escherichia coli at pH 8.2 [Le Bras et al. (1991) Eur.

View Article and Find Full Text PDF