Background And Aims: Pollen grains of flowering plants display a fascinating diversity of forms, including diverse patterns of apertures, the specialized areas on the pollen surface that commonly serve as the sites of pollen tube initiation and, therefore, might play a key role in reproduction. Although many aperture patterns exist in angiosperms, pollen with three apertures (triaperturate) constitutes the predominant pollen type found in eudicot species. The aim of this study was to explore whether having three apertures provides selective advantages over other aperture patterns in terms of pollen survival, germination and reproductive success, which could potentially explain the prevalence of triaperturate pollen among eudicots.
View Article and Find Full Text PDFPremise: The lack of ability to measure pollen performance traits in mixed pollinations has been a major hurdle in understanding the mechanisms of differential success of compatible pollen donors. In previous work, we demonstrated that nonrandom mating between two accessions of Arabidopsis thaliana, Columbia (Col) and Landsberg (Ler), is mediated by the male genotype. Despite these genetic insights, it was unclear at what stage of reproduction these genes were acting.
View Article and Find Full Text PDFFemale control of nonrandom mating has never been genetically established, despite being linked to inbreeding depression and sexual selection. In order to map the loci that control female-mediated nonrandom mating, we constructed a new advanced intercross recombinant inbred line (RIL) population derived from a cross between Arabidopsis (Arabidopsis thaliana) accessions Vancouver (Van-0) and Columbia (Col-0) and mapped quantitative trait loci (QTLs) responsible for nonrandom mating and seed yield traits. We genotyped a population of 490 RILs.
View Article and Find Full Text PDFIn this study, we ask two questions: (1) Is reproductive success independent of parental genetic distance in predominately selfing plants? (2) In the absence of early inbreeding depression, is there substantial maternal and/or paternal variation in reproductive success in natural populations? Seed yield in single pollinations and proportion of seeds sired in mixed pollinations were studied in genetically defined accessions of the predominately selfing plant Arabidopsis thaliana by conducting two diallel crosses. The first diallel was a standard, single pollination design that we used to examine variance in seed yield. The second diallel was a mixed pollination design that utilized a standard pollen competitor to examine variance in proportion of seeds sired.
View Article and Find Full Text PDFPostpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the genetic loci responsible for male-mediated nonrandom mating, we performed mixed pollinations with Col and RIL pollen on Col pistils.
View Article and Find Full Text PDFSex Plant Reprod
December 2009
Compatible pollinations from many different taxa display nonrandom mating. Here we describe a system for examining questions of nonrandom mating in Arabidopsis thaliana. Using this system, we demonstrate that Arabidopsis thaliana displays nonrandom mating between distinct accessions.
View Article and Find Full Text PDFWe isolated lap3-1 and lap3-2 mutants in a screen for pollen that displays abnormal stigma binding. Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine is thinner, weaker, and is missing some connections between their roof-like tectum structures. We describe the mapping and identification of LAP3 as a novel gene that contains a repetitive motif found in beta-propeller enzymes.
View Article and Find Full Text PDF