Publications by authors named "Ann Kapoun"

Purpose: TIGIT (T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) is a co-inhibitory receptor of T-cell and natural killer cell activity. Targeting TIGIT with or without PD-1/PD-L1 checkpoint inhibition may enhance antitumor immunity.

Patients And Methods: This Phase 1a/b trial was a first-in-human, open-label, multicenter, dose-escalation and -expansion study in patients with locally advanced or metastatic solid tumors.

View Article and Find Full Text PDF

Purpose: Vantictumab is a monoclonal antibody that binds to frizzled (FZD) receptors and inhibits canonical WNT signaling. This phase Ib dose escalation study enrolled patients with locally recurrent or metastatic HER2-negative breast cancer who were treated with weekly paclitaxel in combination with escalating doses of vantictumab.

Methods: Patients were enrolled in dose escalation cohorts treated with weekly paclitaxel 90 mg/m on days 1, 8 and 15 in combination with vantictumab 3.

View Article and Find Full Text PDF

Purpose: The recombinant fusion protein ipafricept blocks Wnt signaling, and in combination with gemcitabine and nab-paclitaxel caused tumor regression in xenografts. This phase Ib study evaluated the combination of ipafricept with nab-paclitaxel + gemcitabine in patients with untreated metastatic pancreatic adenocarcinoma (mPDAC).

Patients And Methods: Dose escalation started with standard dose nab-paclitaxel + gemcitabine and ipafricept (3.

View Article and Find Full Text PDF

The Wnt/β-catenin signaling pathway has been implicated in human proliferative diseases such as cancer and fibrosis. The functions of β-catenin and several other components of this pathway have been investigated in fibrosis. However, the potential role of R-spondin proteins (RSPOs), enhancers of the Wnt/β-catenin signaling, has not been described.

View Article and Find Full Text PDF

Purpose: Notch signaling dysregulation is implicated in the development of pancreatic adenocarcinoma (PDAC). Tarextumab is a fully human IgG2 antibody that inhibits Notch2/3 receptors.

Patients And Methods: Aphase 2, randomized, placebo-controlled, multicenter trial evaluated the activity of tarextumab in combination with nab-paclitaxel and gemcitabine in patients with metastatic PDAC.

View Article and Find Full Text PDF

Vantictumab is a fully human monoclonal antibody that inhibits Wnt pathway signaling through binding FZD1, 2, 5, 7, and 8 receptors. This phase Ib study evaluated vantictumab in combination with nab-paclitaxel and gemcitabine in patients with untreated metastatic pancreatic adenocarcinoma. Patients received vantictumab at escalating doses in combination with standard dosing of nab-paclitaxel and gemcitabine according to a 3 + 3 design.

View Article and Find Full Text PDF

Objectives: The WNT pathway is an important oncologic driver of epithelial ovarian cancer (EOC). The first-in-class recombinant fusion protein ipafricept (IPA) blocks Wnt signaling through binding of Wnt ligands. This phase Ib trial was designed to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RPh2) for IPA in combination with taxane and platinum therapy (C/P).

View Article and Find Full Text PDF

Purpose This Phase I trial evaluated the maximum tolerated dose, safety, pharmacokinetics, pharmacodynamics and preliminary efficacy of tarextumab (OMP-5948), a novel cross-reactive antibody which binds and selectively inhibits signaling via both Notch2 and Notch3, in adult patients with advanced malignancies. Methods Standard 3 + 3 design with tarextumab 0.5, 1, 2.

View Article and Find Full Text PDF

Purpose Navicixizumab (OMP-305B83) is a bispecific antibody that inhibits delta-like ligand 4 and vascular endothelial growth factor. This Phase 1a trial assessed escalating doses of navicixizumab in refractory solid tumors patients. Design A 3 + 3 dose escalation design was used followed by the treatment of additional patients in an expansion cohort.

View Article and Find Full Text PDF

Background: Delta-like ligand 4-Notch (DLL4-Notch) signaling contributes to the maintenance of chemotherapy-resistant cancer stem cells and tumor vasculature.

Objective: This phase IB trial of demcizumab, an IgG2 humanized monoclonal antibody directed against DLL4, was undertaken to determine its maximum tolerated dose, safety, immunogenicity, preliminary efficacy, pharmacokinetics, and pharmacodynamics, combined with standard chemotherapy.

Patients And Methods: Forty-six treatment-naive patients with metastatic non-squamous non-small cell lung cancer (NSCLC) were enrolled in this open-label, dose-escalation study using a standard 6 + 6 design.

View Article and Find Full Text PDF

Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth.

View Article and Find Full Text PDF

Wnt signaling is implicated in tumor cell dedifferentiation and cancer stem cell function. Ipafricept (OMP-54F28) is a first-in-class recombinant fusion protein with the extracellular part of human frizzled 8 receptor fused to a human IgG1 Fc fragment that binds Wnt ligands. This trial evaluated ipafricept in patients with solid tumors.

View Article and Find Full Text PDF

The WNT pathway mediates intercellular signaling that regulates cell fate in both normal development and cancer. It is widely appreciated that the WNT pathway is frequently dysregulated in human cancers through a variety of genetic and epigenetic mechanisms. Targets in the WNT pathway are being extensively pursued for the development of new anticancer therapies, and we have advanced two WNT antagonists for clinical development: vantictumab (anti-FZD) and ipafricept (FZD8-Fc).

View Article and Find Full Text PDF

The Notch signalling pathway mediates cell fate decisions and is tumour suppressive or oncogenic depending on the context. During lung development, Notch pathway activation inhibits the differentiation of precursor cells to a neuroendocrine fate. In small-cell lung cancer, an aggressive neuroendocrine lung cancer, loss-of-function mutations in NOTCH genes and the inhibitory effects of ectopic Notch activation indicate that Notch signalling is tumour suppressive.

View Article and Find Full Text PDF

Purpose Adenoid cystic carcinomas (ACCs) represent a heterogeneous group of chemotherapy refractory tumors, with a subset demonstrating an aggressive phenotype. We investigated the molecular underpinnings of this phenotype and assessed the Notch1 pathway as a potential therapeutic target. Methods We genotyped 102 ACCs that had available pathologic and clinical data.

View Article and Find Full Text PDF

Deregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling.

View Article and Find Full Text PDF

Purpose: The Notch pathway plays an important role in both stem cell biology and cancer. Dysregulation of Notch signaling has been reported in several human tumor types. In this report, we describe the development of an antibody, OMP-59R5 (tarextumab), which blocks both Notch2 and Notch3 signaling.

View Article and Find Full Text PDF

Purpose: This phase I trial evaluated the safety, pharmacokinetics, and pharmacodynamics of demcizumab (OMP-21M18), a humanized IgG2 mAb targeting the Notch ligand DLL4 in adult patients with advanced malignancies.

Experimental Design: Standard 3+3 design, with demcizumab 0.5, 1, 2.

View Article and Find Full Text PDF

Purpose: We previously showed that targeting Delta-like ligand 4 (DLL4) in colon and breast tumors inhibited tumor growth and reduced tumor initiating cell frequency. In this report, we have extended these studies to pancreatic cancer and probed the mechanism of action in tumor and stromal cells involved in antitumor efficacy.

Experimental Design: Patient-derived pancreatic xenograft tumor models were used to evaluate the antitumor effect of anti-DLL4.

View Article and Find Full Text PDF

Though xenografts are used extensively for drug development in breast cancer, how well xenografts reflect the breadth of primary breast tumor subtypes has not been well characterized. Moreover, few studies have compared the gene expression of xenograft tumors to the primary tumors from which they were derived. Here we investigate whether the ability of human breast tumors (n = 20) to create xenografts in immune-deficient mice is associated with breast cancer immunohistochemical (IHC) and intrinsic subtype.

View Article and Find Full Text PDF

The Wnt/β-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members.

View Article and Find Full Text PDF

KRAS mutations are frequent in colorectal cancer (CRC) and are associated with clinical resistance to treatment with the epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies. Delta-like 4 ligand (DLL4) is an important component of the Notch signaling pathway and mediates stem cell self-renewal and vascular development. DLL4 inhibition in colon tumor cells reduces tumor growth and stem cell frequency.

View Article and Find Full Text PDF

Myocardial Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibition improves cardiac function following myocardial infarction (MI), but the CaMKII-dependent pathways that participate in myocardial stress responses are incompletely understood. To address this issue, we sought to determine the transcriptional consequences of myocardial CaMKII inhibition after MI. We performed gene expression profiling in mouse hearts with cardiomyocyte-delimited transgenic expression of either a CaMKII inhibitory peptide (AC3-I) or a scrambled control peptide (AC3-C) following MI.

View Article and Find Full Text PDF

Background: TGFbeta has emerged as an attractive target for the therapeutic intervention of glioblastomas. Aberrant TGFbeta overproduction in glioblastoma and other high-grade gliomas has been reported, however, to date, none of these reports has systematically examined the components of TGFbeta signaling to gain a comprehensive view of TGFbeta activation in large cohorts of human glioma patients.

Methods: TGFbeta activation in mammalian cells leads to a transcriptional program that typically affects 5-10% of the genes in the genome.

View Article and Find Full Text PDF

Ozone is a potent oxidant and causes airway hyperresponsiveness and neutrophilia. To determine the role of p38 mitogen-activated protein kinase (MAPK) activation, we studied the effect of a p38alpha inhibitor SD-282 (Scios Inc, Fremont, CA USA) on ozone-induced airway hyperresponsiveness and neutrophilia. Balb/c mice received SD-282 (30 or 90 mg/kg i.

View Article and Find Full Text PDF