Background: Pancreatic fibrosis is an early diagnostic feature of the common inherited disorder cystic fibrosis (CF). Many people with CF (pwCF) are pancreatic insufficient from birth and the replacement of acinar tissue with cystic lesions and fibrosis is a progressive phenotype that may later lead to diabetes. Little is known about the initiating events in the fibrotic process though it may be a sequela of inflammation in the pancreatic ducts resulting from loss of CFTR impairing normal fluid secretion.
View Article and Find Full Text PDFIntroduction: Mitochondrial diseases are known inborn errors affecting energy metabolism and are as common as chronic diseases such as diabetes, affecting approximately 1 in 5,000 people. The role of mitochondrial diseases/dysfunction has been highlighted in neurodevelopmental disorders like ASD, ADHD, intellectual disability, and speech delay, as well as various psychiatric conditions. Neurodevelopmental disorders are increasingly recognized as having behavioral and psychiatric symptoms.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
June 2024
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts.
View Article and Find Full Text PDFA "universal strategy" replacing the full-length cDNA may treat >99% of people with cystic fibrosis (pwCF), regardless of their specific mutations. Cas9-based gene editing was used to insert the cDNA and a truncated CD19 () enrichment tag at the locus in airway basal stem cells. This strategy restores CFTR function to non-CF levels.
View Article and Find Full Text PDFWe identified and characterized multiple cell-type selective enhancers of the CFTR gene promoter in previous work and demonstrated active looping of these elements to the promoter. Here we address the impact of genomic spacing on these enhancer:promoter interactions and on CFTR gene expression. Using CRISPR/Cas9, we generated clonal cell lines with deletions between the -35 kb airway enhancer and the CFTR promoter in the 16HBE14o airway cell line, or between the intron 1 (185 + 10 kb) intestinal enhancer and the promoter in the Caco2 intestinal cell line.
View Article and Find Full Text PDFBackground: The human epididymis is poorly studied due to the lack of availability of tissue samples. Our understanding of its structure and function depends upon anatomical and histological observations of archived material.
Objectives: Here we used single-cell RNA sequencing (scRNA-seq) technologies to elucidate the identity of cells within the human efferent ducts (EDs) and compared them to caput epididymis cells.
The airway epithelial cell line, 16HBE14o , is an important cell model for studying airway disease. 16HBE14o cells were originally generated from primary human bronchial epithelial cells by SV40-mediated immortalization, a process that is associated with genomic instability through long-term culture. Here, we explore the heterogeneity of these cells, with respect to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) transcript and protein.
View Article and Find Full Text PDFThe precise molecular events initiating human lung disease are often poorly characterized. Investigating prenatal events that may underlie lung disease in later life is challenging in man, but insights from the well-characterized sheep model of lung development are valuable. Here, we determine the transcriptomic signature of lung development in wild-type sheep (WT) and use a sheep model of cystic fibrosis (CF) to characterize disease associated changes in gene expression through the pseudoglandular, canalicular, saccular, and alveolar stages of lung growth and differentiation.
View Article and Find Full Text PDFHighly effective modulator therapies for cystic fibrosis (CF) make it a treatable condition for many people. However, although CF respiratory illness occurs after birth, other organ systems particularly in the digestive tract are damaged before birth. We use an ovine model of CF to investigate the in utero origins of CF disease since the sheep closely mirrors critical aspects of human development.
View Article and Find Full Text PDFTranscription of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is regulated by both ubiquitous and cell-type selective cis-regulatory elements (CREs). These CREs include extragenic and intronic enhancers that bind lineage-specific transcription factors, and architectural protein-marked structural elements. Deletion of the airway-selective -35 kb enhancer in 16HBE14o lung epithelial cells was shown earlier to disrupt normal enhancer-promoter looping at the CFTR locus and nearly abolish its expression.
View Article and Find Full Text PDFCell Tissue Res
February 2023
Primary human epididymis epithelial (HEE) cells are valuable reagents for functional studies on the human epididymis. We used them previously to determine the transcriptional networks that establish cell identity along the length of the epididymis from caput, corpus, and cauda. These studies on HEE cells and organoids derived from them revealed important cellular properties.
View Article and Find Full Text PDFCross-talk between lung epithelial cells and their microenvironment has an important physiological role in development. Using an in vitro model of differentiation of human induced pluripotent stem cells (iPSCs) to air-liquid interface (ALI)-cultured lung epithelial cells, we investigated the contribution of the microenvironment to maintenance of the lung progenitor cell state. Our protocol modeled in vivo cell-to-matrix and cell-to-cell interactions.
View Article and Find Full Text PDFThe evolutionary relationship of cells within tissues having a similar function but located in different anatomical sites is of considerable biological interest. The development of single-cell RNA sequencing (scRNA-seq) protocols has greatly enhanced opportunities to address this topic. Here we focus on cells in the epithelium which lines two regions of the human respiratory tract and the male genital ducts to delineate the shared, differentiated functions of the different cell populations.
View Article and Find Full Text PDFIntroduction: The primary aim of this study was to evaluate patient-reported outcome measures in patients undergoing mastectomy with and without breast reconstruction (immediate or delayed) with and without nipple preservation.
Methods: All female patients undergoing mastectomy between 2011 and 2015 at Mayo Clinic Rochester were identified and were mailed the BREAST-Q survey. Breast satisfaction, psychosocial well-being, and sexual well-being were evaluated and compared by surgery type using Wilcoxon rank-sum tests for univariate analysis and linear regression for multivariable analysis adjusting for potential confounders.
Robust protocols to examine 3D chromatin structure have greatly advanced knowledge of gene regulatory mechanisms. Here we focus on the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which provides a paradigm for validating models of gene regulation built upon genome-wide analysis. We examine the mechanisms by which multiple cis-regulatory elements (CREs) at the CFTR gene coordinate its expression in intestinal epithelial cells.
View Article and Find Full Text PDFSingle cell RNA-sequencing has accurately identified cell types within the human airway that express the Cystic Fibrosis Transmembrane Conductance regulator (CFTR) gene. Low abundance CFTR transcripts are seen in many secretory cells, while high levels are restricted to rare pulmonary ionocytes. Here we focus on the mechanisms coordinating basal CFTR expression in the secretory compartment.
View Article and Find Full Text PDFCystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator () gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) gene lies within a topologically associated domain (TAD) in which multiple cis-regulatory elements (CREs) and transcription factors (TFs) regulate its cell-specific expression. The CREs are recruited to the gene promoter by a looping mechanism that depends upon both architectural proteins and specific TFs. An siRNA screen to identify TFs coordinating CFTR expression in airway epithelial cells suggested an activating role for BTB domain and CNC homolog 1 (BACH1).
View Article and Find Full Text PDFThe causative gene in cystic fibrosis (CF) was identified in 1989, 3 years before the publication of the first issue of Human Molecular Genetics. The cystic fibrosis transmembrane conductance regulator (CFTR) gene was among the first underlying a common inherited disorder to be cloned, and hence, its subsequent utilization toward a cure for CF provides a roadmap for other monogenic diseases. Over the past 30 years, the advances that built upon knowledge of the gene and the CFTR protein to develop effective therapeutics have been remarkable, and yet, the setbacks have also been challenging.
View Article and Find Full Text PDFA complex network of transcription factors regulates genes involved in establishing and maintaining key biological properties of the human airway epithelium. However, detailed knowledge of the contributing factors is incomplete. Here we characterize the role of Krüppel-like factor 5 (KLF5), in controlling essential pathways of epithelial cell identity and function in the human lung.
View Article and Find Full Text PDFMechanisms regulating gene expression in the airway epithelium underlie its response to the environment. A network of transcription factors (TFs) and architectural proteins, modulate chromatin accessibility and recruit activating or repressive signals. Bromodomain-containing proteins function as TFs or by engaging methyltransferase or acetyltransferase activity to induce chromatin modifications.
View Article and Find Full Text PDFBackground: Cell-specific and developmental mechanisms contribute to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however, its developmental regulation is poorly understood. Here we use human induced pluripotent stem cells differentiated into pseudostratified airway epithelial cells to study these mechanisms.
Results: Changes in gene expression and open chromatin profiles were investigated by RNA-seq and ATAC-seq, and revealed that alterations in CFTR expression are associated with differences in stage-specific open chromatin.
Int J Environ Res Public Health
October 2020
Sport-related concussions (SRC) are an increasingly common concern in young athletes, with long-term cognitive, physiological, behavioral, and psychological adverse outcomes. An estimated 1.1 million to 1.
View Article and Find Full Text PDFSpermatozoa released from the testis are unable to fertilize an egg without a coordinated process of maturation in the lumen of the epididymis. Relatively little is known about the molecular events that integrate this critical progression along the male genital ducts in man. Here, we use single cell RNA-sequencing to construct an atlas of the human proximal epididymis.
View Article and Find Full Text PDFThe availability of robust protocols to differentiate induced pluripotent stem cells (iPSCs) into many human cell lineages has transformed research into the origins of human disease. The efficacy of differentiating iPSCs into specific cellular models is influenced by many factors including both intrinsic and extrinsic features. Among the most challenging models is the generation of human bronchial epithelium at air-liquid interface (HBE-ALI), which is the gold standard for many studies of respiratory diseases including cystic fibrosis.
View Article and Find Full Text PDF