The recognition power and affinity pattern of various cyclodextrins (CD) towards the enantiomers of tetrahydrozoline (THZ) were studied using capillary electrophoresis (CE). As expected, affinity of THZ enantiomers and selectivity of recognition towards CD derivatives was strongly dependent on the cavity size and substituent type and pattern on the CD rims. Not only were the affinity strength and selectivity of recognition affected by the size of the cavity and chemistry of the CDs but also the affinity pattern.
View Article and Find Full Text PDFThe major goal of this study was to determine the affinity pattern of the terbutaline (TB) enantiomers toward α-, β-, γ-, and heptakis(2,3-di-O-acetyl)-β-cyclodextrins and using NMR spectroscopy for the understanding of the fine mechanisms of interaction between the cyclodextrins (CD) and TB enantiomers. It was shown once again that CE in combination with NMR spectroscopy represents a sensitive tool to study the affinity patterns and structure of CD complexes with chiral guests. Opposite affinity patterns of TB enantiomers toward native α- and β-CDs were associated with significant differences between the structure of the related complexes in solution.
View Article and Find Full Text PDFThe major goal of this study was to determine the affinity pattern of brombuterol (BB) enantiomers toward various cyclodextrins (CD) and to evaluate the potential of NMR spectroscopy for understanding fine mechanisms of interactions between CDs and BB enantiomers. Separation of BB enantiomers was performed in a fused-silica capillary using a phosphate buffer, pH 2.5, at the room temperature in the normal polarity mode.
View Article and Find Full Text PDFThe affinity pattern of terbutaline enantiomers towards various cyclodextrins was studied using capillary electrophoresis. The affinity pattern of terbutaline enantiomers was the same towards all studied cyclodextrins except heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD. Nuclear magnetic resonance spectroscopy was used for understanding of fine structural mechanisms of interactions of β-cyclodextrin and its two sulfated derivatives with the enantiomers of terbutaline.
View Article and Find Full Text PDFNMR spectroscopy experiments, molecular dynamics simulations, and theoretical chemistry calculations provide insight into the structural and energetic determinants of the distinct binding of clenpenterol enantiomers to two cyclodextrins and the migration order reversal of their respective inclusion complexes in capillary electrophoresis.
View Article and Find Full Text PDFIn the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when β-CD or the sulfated heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD (HMDS-β-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins.
View Article and Find Full Text PDF