Publications by authors named "Ann Christin Lindas"

In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of the first eukaryotic cell is believed to come from a merger between an archaeal host and an alphaproteobacterium, yet the details of this process remain debated.
  • Recent studies on profilins from the Asgard superphylum revealed that they can inhibit eukaryotic actin polymerization and interact with phospholipids, indicating regulatory functions.
  • The discovery of a profilin (heimProfilin) in Heimdallarchaeota LC3, which interacts with phospholipids and polyproline motifs, suggests that complex cytoskeletal features existed before the rise of eukaryotes.
View Article and Find Full Text PDF

is a gram-negative bacterium that often asymptomatically colonizes the human nasopharyngeal tract. These bacteria cross the epithelial barrier can cause life-threatening sepsis and/or meningitis. Antimicrobial peptides are one of the first lines of defense against invading bacterial pathogens.

View Article and Find Full Text PDF

The origin of the eukaryotic cell is an unsettled scientific question. The Asgard superphylum has emerged as a compelling target for studying eukaryogenesis due to the previously unseen diversity of eukaryotic signature proteins. However, our knowledge about these proteins is still relegated to metagenomic data and very little is known about their structural properties.

View Article and Find Full Text PDF

is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in , we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring.

View Article and Find Full Text PDF

In bacteria, the GntR family is a widespread family of transcription factors responsible for the regulation of a myriad of biological processes. In contrast, despite their occurrence in archaea only a little information is available on the function of GntR-like transcription factors in this domain of life. The thermoacidophilic crenarchaeon harbors a GntR-like regulator belonging to the YtrA subfamily, encoded as the first gene in an operon with a second gene encoding a putative membrane protein.

View Article and Find Full Text PDF

Super-resolution microscopy (SRM) has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for SRM designed to combine high performance and ease of use.

View Article and Find Full Text PDF

Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadR) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius.

View Article and Find Full Text PDF

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N-methyl-adenine (m6A), N-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) is a powerful method used for identifying genome-wide DNA-protein interactions in vivo. A large number of essential intracellular processes such as DNA replication, transcription regulation, chromatin stability, and others are all dependent on protein interactions with DNA. The DNA fragments enriched from the ChIP assay are analyzed by downstream applications, for example, microarray hybridization (ChIP-chip), quantitative PCR (ChIP-qPCR), or deep sequencing (ChIP-seq).

View Article and Find Full Text PDF

Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins.

View Article and Find Full Text PDF

Background: The Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a β-alanine aminotransferase gene, which is involved in β-alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the α-amino acids but interacts specifically with β-alanine.

View Article and Find Full Text PDF

The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 °C. Although this protein only has ∼ 20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs.

View Article and Find Full Text PDF

On 19 January 2014 Rolf ('Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden.

View Article and Find Full Text PDF

In archaea, nothing is known about the β-alanine degradation pathway or its regulation. In this work, we identify and characterize BarR, a novel Lrp-like transcription factor and the first one that has a non-proteinogenic amino acid ligand. BarR is conserved in Sulfolobus acidocaldarius and Sulfolobus tokodaii and is located in a divergent operon with a gene predicted to encode β-alanine aminotransferase.

View Article and Find Full Text PDF

The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeon Pyrobaculum calidifontis is reported at 3.35 Å resolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein.

View Article and Find Full Text PDF

In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented.

View Article and Find Full Text PDF

Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination.

View Article and Find Full Text PDF

Replication origins were mapped in hyperthermophilic crenarchaea, using high-throughput sequencing-based marker frequency analysis. We confirm previous origin mapping in Sulfolobus acidocaldarius, and demonstrate that the single chromosome of Pyrobaculum calidifontis contains four replication origins, the highest number detected in a prokaryotic organism. The relative positions of the origins in both organisms coincided with regions enriched in highly conserved (core) archaeal genes.

View Article and Find Full Text PDF

Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (>4MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors.

View Article and Find Full Text PDF

Cell division is mediated by different mechanisms in different evolutionary lineages. While bacteria and euryarchaea utilize an FtsZ-based mechanism, most crenarchaea divide using the Cdv system, related to the eukaryotic ESCRT-III machinery. Intriguingly, thaumarchaeal genomes encode both FtsZ and Cdv protein homologues, raising the question of their division mode.

View Article and Find Full Text PDF

In eukaryotic and bacterial cells, spatial organization is dependent upon cytoskeletal filaments. Actin is a main eukaryotic cytoskeletal element, involved in key processes such as cell shape determination, mechanical force generation and cytokinesis. We describe an archaeal cytoskeleton which forms helical structures within Pyrobaculum calidifontis cells, as shown by in situ immunostaining.

View Article and Find Full Text PDF

In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction.

View Article and Find Full Text PDF

The aim of this study was to investigate the mechanism by which tripeptidyl-peptidase II (TPP II) can specifically release tripeptides from the free N-terminus of an oligopeptide. The subtilisin-like N-terminal part of TPP II was modelled using subtilisin as template. Two glutamate residues (Glu-305 and Glu-331) appeared to be positioned so as to interact with the positively charged N-terminus of the substrate.

View Article and Find Full Text PDF

Tripeptidyl-peptidase II (TPP II) is one of the many proteases involved in the important process of intracellular proteolysis. The widespread distribution and broad substrate specificity suggest that TPP II is encoded by a "house-keeping gene". However, both TPP II protein and mRNA levels vary in different cells.

View Article and Find Full Text PDF