The standard of care for advanced head and neck cancers (HNSCCs) is radiochemotherapy, including cisplatin. This treatment results in a cure rate of approximately 85% for oropharyngeal HPV-positive HNSCCs, in contrast to only 50% for HPV-negative HNSCCs, and is accompanied by severe side effects for both entities. Therefore, innovative treatment modalities are required, resulting in a better outcome for HPV-negative HNSCCs, and lowering the adverse effects for both entities.
View Article and Find Full Text PDFBackground: The oncogene epidermal growth factor receptor variant III (EGFRvIII) is expressed in approximately one-third of all glioblastomas (GBMs). So far it is not clear if EGFRvIII expression induces replication stress in GBM cells, which might serve as a therapeutical target.
Methods: Isogenetic EGFRvIII- and EGFRvIII+ cell lines with endogenous EGFRvIII expression were used.
Neutrophil extracellular traps (NETs) have been described as a potential trigger of severe COVID-19. NETs are known as extracellular DNA fibers released by neutrophils in response to infection. If the host is unable to balance efficient clearance of NETs by dornases (DNases), detrimental consequences occur.
View Article and Find Full Text PDFChromosomal instability (CIN) is an emerging hallmark of cancer and its role in therapeutic responses has been increasingly attracting the attention of the research community. To target the vulnerability of tumors with high CIN, it is important to identify the genes and mechanisms involved in the maintenance of CIN. In our work, we recognize the tumor suppressor gene Phosphatase and Tensin homolog ( as a potential gene causing CIN in triple-negative breast cancer (TNBC) and show that TNBC with low expression levels of PTEN can be sensitized for the treatment with poly-(ADP-ribose)-polymerase 1 (PARP1) inhibitors, independent of Breast Cancer (BRCA) mutations or a BRCA-like phenotype.
View Article and Find Full Text PDFChromosomal instability not only has a negative effect on survival in triple-negative breast cancer, but also on the well treatable subgroup of luminal A tumors. This suggests a general mechanism independent of subtypes. Increased chromosomal instability (CIN) in triple-negative breast cancer (TNBC) is attributed to a defect in the DNA repair pathway homologous recombination.
View Article and Find Full Text PDFWhilst heterozygous germline mutations in the ABRAXAS1 gene have been associated with a hereditary predisposition to breast cancer, their effect on promoting tumourigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish ABRAXAS1 founder mutation (c.1082G > A, Arg361Gln), even in the heterozygous state leads to decreased BRCA1 protein levels as well as reduced nuclear localization and foci formation of BRCA1 and CtIP.
View Article and Find Full Text PDFPro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation.
View Article and Find Full Text PDFCellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication.
View Article and Find Full Text PDFCdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells.
View Article and Find Full Text PDFXPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR).
View Article and Find Full Text PDFThere is a need to develop new, more efficient therapies for head and neck cancer (HNSCC) patients. It is currently unclear whether defects in DNA repair genes play a role in HNSCCs' resistance to therapy. PARP1 inhibitors (PARPi) were found to be "synthetic lethal" in cancers deficient in BRCA1/2 with impaired homologous recombination.
View Article and Find Full Text PDFNUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability.
View Article and Find Full Text PDFIn response to replication stress ATR signaling through CHK1 controls the intra-S checkpoint and is required for the maintenance of genomic integrity. Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double strand breaks and interstrand crosslinks. In addition, HR, with its key player RAD51, provides critical support for the recovery of stalled forks during replication.
View Article and Find Full Text PDFOver 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.
View Article and Find Full Text PDFRAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells.
View Article and Find Full Text PDFBackground: Replication-dependent radiosensitization of tumors ranks among the most promising tools for future improvements in tumor therapy. However, cell cycle checkpoint signaling during S phase is a key for maintaining genomic stability after ionizing irradiation allowing DNA damage repair by stabilizing replication forks, inhibiting new origin firing and recruiting DNA repair proteins. As the impact of the different types of DNA damage induced by ionizing radiation on replication fork functionality has not been investigated, this study was performed in tumor cells treated with various agents that induce specific DNA lesions.
View Article and Find Full Text PDF