Publications by authors named "Ann C Hashimoto"

The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis.

View Article and Find Full Text PDF

People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism.

View Article and Find Full Text PDF

The essential micronutrient selenium (Se) provides antioxidant defense and supports numerous biological functions. Obtained through dietary intake, Se is incorporated into selenoproteins the amino acid, selenocysteine (Sec). Mice with genetic deletion of the Se carrier, selenoprotein P (SELENOP), and the Se recycling enzyme selenocysteine lyase (SCLY), suffer from sexually dimorphic neurological deficits and require Se supplementation for viability.

View Article and Find Full Text PDF

Background: The amino acid selenocysteine (Sec) is an integral part of selenoproteins, a class of proteins mostly involved in strong redox reactions. The enzyme Sec lyase (SCLY) decomposes Sec into selenide allowing for the recycling of the selenium (Se) atom via the selenoprotein synthesis machinery. We previously demonstrated that disruption of the Scly gene (Scly KO) in mice leads to the development of obesity and metabolic syndrome, with effects on glucose homeostasis, worsened by Se deficiency or a high-fat diet, and exacerbated in male mice.

View Article and Find Full Text PDF

Selenium is a nonmetal trace element that is critical for several redox reactions and utilized to produce the amino acid selenocysteine (Sec), which can be incorporated into selenoproteins. Selenocysteine lyase (SCL) is an enzyme which decomposes Sec into selenide and alanine, releasing the selenide to be further utilized to synthesize new selenoproteins. Disruption of the selenocysteine lyase gene () in mice ( or Scly KO) led to obesity with dyslipidemia, hyperinsulinemia, glucose intolerance and lipid accumulation in the hepatocytes.

View Article and Find Full Text PDF

Selenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis.

View Article and Find Full Text PDF

Selenium is an essential trace element linked to normal development and antioxidant defense mechanisms through its incorporation into selenoproteins via the amino acid, selenocysteine (Sec). Male mice lacking both the Se transporter, selenoprotein P (SELENOP), and selenocysteine lyase (Scly), which plays a role in intracellular Se utilization, require Se supplementation for viability and exhibit neuromotor deficits. Previously, we demonstrated that male SELENOP/Scly double knockout (DKO) mice suffer from loss of motor function and audiogenic seizures due to neurodegeneration, both of which are alleviated by prepubescent castration.

View Article and Find Full Text PDF

Selenoproteins are an essential class of proteins involved in redox signaling and energy metabolism. However, the functions of many selenoproteins are not clearly established. Selenoprotein M (SELENOM), an endoplasmic reticulum (ER)-resident oxidoreductase bearing structural similarity to thioredoxin (TXN), is among those yet to be fully characterized.

View Article and Find Full Text PDF

Selenoprotein P (SelenoP) functions as a plasma transporter of selenium (Se) from liver to other tissues via incorporation into multiple selenocysteine (Sec) residues. Selenocysteine lyase (Scly) is an intracellular enzyme that decomposes Sec into selenide, providing Se for the synthesis of new selenoproteins. Both SelenoP and Scly are mostly produced by the liver.

View Article and Find Full Text PDF

Selenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice.

View Article and Find Full Text PDF

Unlabelled: Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels.

View Article and Find Full Text PDF

Aims: Selenocysteine lyase (Scly) mediates selenocysteine decomposition. It was previously demonstrated that, upon adequate caloric intake (12% kcal fat) and selenium deficiency, disruption of Scly in mice leads to development of metabolic syndrome. In this study, we investigate the effect of a high-fat (45% kcal) selenium-adequate diet in Scly knockout (KO) mice on development of metabolic syndrome.

View Article and Find Full Text PDF

Subjects with Alzheimer's disease (AD) have elevated brain levels of the selenium transporter selenoprotein P (Sepp1). We investigated if this elevation results from increased release of Sepp1 from the choroid plexus (CP). Sepp1 is significantly increased in CP from AD brains in comparison to non-AD brains.

View Article and Find Full Text PDF

Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor.

View Article and Find Full Text PDF

Background Selenoprotein W (Sepw1) is a selenium-containing protein that is abundant in brain and muscle of vertebrate animals. Muscular expression of Sepw1 is reduced by dietary selenium (Se) deficiency in mammals, whereas brain expression is maintained. However, expression of Sepw1 depends on the Se transporter selenoprotein P (Sepp1).

View Article and Find Full Text PDF

Selenium is an essential trace element that is co-translationally incorporated into selenoproteins in the form of the 21st amino acid, selenocysteine. This class of proteins largely functions in oxidation-reduction reactions and is critically involved in maintaining proper redox balance essential to health. Selenoprotein M (SelM) is a thioredoxin-like endoplasmic reticulum-resident protein that is highly expressed in the brain and possesses neuroprotective properties.

View Article and Find Full Text PDF

Selenium (Se) is an essential trace element used for biosynthesis of selenoproteins and is acquired either through diet or cellular recycling mechanisms. Selenocysteine lyase (Scly) is the enzyme that supplies Se for selenoprotein biosynthesis via decomposition of the amino acid selenocysteine (Sec). Knockout (KO) of Scly in a mouse affected hepatic glucose and lipid homeostasis.

View Article and Find Full Text PDF

Immune complexes composed of IgG-opsonized pathogens, particles, or proteins are phagocytosed by macrophages through Fcγ receptors (FcγRs). Macrophages primed with IFNγ or other pro-inflammatory mediators respond to FcγR engagement by secreting high levels of cytokines and nitric oxide (NO). We found that unprimed macrophages produced lower levels of NO, which required efficient calcium (Ca(2+)) flux as demonstrated by using macrophages lacking selenoprotein K, which is required for FcγR-induced Ca(2+) flux.

View Article and Find Full Text PDF

Calpains are proteolytic enzymes that modulate cellular function through cleavage of targets, thereby modifying their actions. An important role is emerging for calpains in regulating inflammation and immune responses, although specific mechanisms by which this occurs have not been clearly defined. In this study, we identify a novel target of calpain, selenoprotein K (SelK), which is an endoplasmic reticulum transmembrane protein important for Ca(2+) flux in immune cells.

View Article and Find Full Text PDF

The immune-enhancing effects of selenium (Se) supplementation make it a promising complementary and alternative medicine modality for boosting immunity, although mechanisms by which Se influences immunity are unclear. Mice fed low (0.08 mg/kg), medium (0.

View Article and Find Full Text PDF

A mouse model for allergic airway inflammation involving ovalbumin (OVA) sensitization and challenge has been developed that reproduces hallmark features of human asthma and has provided valuable insight into the mechanisms by which this disease occurs. Cellular infiltrate in lungs of mice used in this model have conventionally been evaluated using histological examination of tissue sections and light microscopic analysis of lung lavage samples. As an alternative or complementary approach for characterizing cellular infiltrate, we developed a multicolor fluorescence-activated cell sorter (FACS) method involving the simultaneous detection of seven different markers on lung cell suspensions: CD4, CD8, B220, CD11b, Gr-1, CD49b, and FcepsilonRI.

View Article and Find Full Text PDF

Selenoprotein P (Sel P) is a selenium-rich glycoprotein believed to play a key role in selenium (Se) transport throughout the body. Development of a Sel P knockout mouse model has supported this notion and initial studies have indicated that selenium supply to various tissues is differentially affected by genetic deletion of Sel P. Se in the form of the amino acid, selenocysteine, is incorporated into selenoproteins at UGA codons.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: