Unlabelled: The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound as a potent entry inhibitor lacking cellular toxicity.
View Article and Find Full Text PDFEnergy metabolism in the diamondback moth Plutella xylostella is facilitated by trehalase, an enzyme which assists in trehalose hydrolysis, from the predominant gut bacterium Enterobacter cloacae. We report the biochemical and structural characterization of recombinant trehalase from E. cloacae (Px_EclTre).
View Article and Find Full Text PDFTrehalase catalyzes hydrolysis of trehalose and plays a crucial role in insect metabolism. In the present study, phylogenetic analysis and multiple sequence alignment suggested that H. armigera trehalase-1 (HaTre-1) is closely related to other soluble trehalases with conserved signature features and functional sites.
View Article and Find Full Text PDFThe adverse effect of glucosinolates on diverse phytophagous insects is well documented, but its impact on insect physiology has remained enigmatic. Here we report insights into detrimental effects of plant glucosinolate molecule, sinigrin, on Helicoverpa armigera growth and development. In-silico screening of multiple glucosinolates predicted sinigrin as one of the potential inhibitor of H.
View Article and Find Full Text PDFBackground: is an important insect pest infesting sorghum and maize. The larvae internalize in the stem, rendering difficulties in pest management. We investigated the effects of proteinase inhibitors (CanPIs) on larvae by and experiments.
View Article and Find Full Text PDF