Erythropoietin (EPO) exerts non-canonical roles beyond erythropoiesis that are developmentally, structurally, and physiologically relevant for the heart as a paracrine factor. The role for paracrine EPO signalling and cellular crosstalk in the adult is uncertain. Here, we provided novel evidence showing cardiomyocyte restricted loss of function in in adult mice induced hyper-compensatory increases in expression by adjacent cardiac endothelial cells via HIF-2α independent mechanisms.
View Article and Find Full Text PDFThe role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear.
View Article and Find Full Text PDFType 1 alveolar epithelial cells (AT1s) and type 2 alveolar epithelial cells (AT2s) regulate the structural integrity and function of alveoli. AT1s mediate gas exchange, whereas AT2s serve multiple functions, including surfactant secretion and alveolar repair through proliferation and differentiation into AT1s as progenitors. However, mechanisms regulating AT2 proliferation and differentiation remain unclear.
View Article and Find Full Text PDFAm J Respir Crit Care Med
June 2023
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in a particularly poor prognosis. To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis.
View Article and Find Full Text PDFProblem: Estrogen-dependent extrauterine implantation and growth of menstrual endometrial tissue affects roughly 10% of reproductive age women and depends on suppression of local innate immune defenses to prevent ectopic tissue rejection. Immunohistochemistry has shown the immune check-point inhibitor CD200 which can suppress rejection is expressed in eutopic endometrium and in ectopic deposits. Soluble CD200 accumulated in venules draining eutopic and ectopic endometrium of endometriosis cases in the secretory phase but not proliferative phase of the menstrual cycle, and should be increased in the circulation.
View Article and Find Full Text PDFSince the discovery of the myofibroblast over 50 years ago, much has been learned about its role in wound healing and fibrosis. Its origin, however, remains controversial, with a number of progenitor cells being proposed. Macrophage-myofibroblast transition (MMT) is a recent term coined in 2014 that describes the mechanism through which macrophages, derived from circulating monocytes originating in the bone marrow, transformed into myofibroblasts and contributed to kidney fibrosis.
View Article and Find Full Text PDFPulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution.
View Article and Find Full Text PDF