Rare diseases are usually chronically debilitating or even life-threatening with diagnostic and therapeutic challenges in current clinical practice. It has been estimated that 80% of rare diseases are genetic in origin, and thus genome sequencing-based diagnosis offers a promising alternative for rare-disease management. In this study, 79 individuals from 16 independent families were performed for whole-genome sequencing (WGS) in an effort to identify the causative mutations for 16 distinct rare diseases that are largely clinically intractable.
View Article and Find Full Text PDFOvarian carcinoma is the most lethal gynecological malignancy worldwide. Recent advance in genomic/epigenomic researches will impact on our prevention, detection and intervention on ovarian carcinoma. Detection of germline mutations in BRCA1/BRCA2, mismatch repair genes, and other genes in the homologous recombination/DNA repair pathway propelled the genetic surveillance of most hereditary ovarian carcinomas.
View Article and Find Full Text PDFCompared with traditional cytotoxic cancer therapy, therapy-induced cancer cell senescence attracts much interest because it is similarly effective, has fewer side effects, and is more efficiently cleared by immune cells. In this study, we demonstrate that unlike caffeic acid phenethyl ester, caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE), which is isolated from the medicinal plants Sarcandra glabra and Teucrium pilosum, inhibits human cancer cell growth and colony formation by inducing cancer cell senescence, not apoptosis. CADPE induces cell senescence and morphology changes by increasing cellular size and cytoplasmic granularity, enhancing senescence-associated β-galactosidase activity and differentiated embryo-chondrocyte expressed gene 1 expression, and blocking cell-cycle arrest in the G(1) phase.
View Article and Find Full Text PDF