Publications by authors named "Anli Geng"

Filamentous fungi are working horses for industrial enzyme production. Combinatory approaches, such as random mutagenesis and rational genetic engineering, were adopted to improve their enzyme productivity. The filamentous fungus Talaromyces pinophilus EMU is a hyper cellulase-producing filamentous fungus obtained through random mutagenesis.

View Article and Find Full Text PDF

CRISPR Cas9 system is becoming an emerging genome-editing platform and has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. In this study, we developed a novel replicative and integrative CRISPR Cas9 genome-editing platform for large DNA construct in vivo assembly, replication, and high-copy genome integration in Saccharomyces cerevisiae. It harnessed advantages of autonomous replicative sequence in S.

View Article and Find Full Text PDF

Trichoderma harzianum EU2-77 was a mutant strain of the wild-type strain T. harzianum NP13a isolated in Singapore. A multi-mutagenesis one-screening (MMOS) method was developed to further improve strain EU2-77 and a new mutant EUA20 was obtained.

View Article and Find Full Text PDF

Oil palm empty fruit bunch (OPEFB) is a lignocellulosic biomass generated in palm oil mills. It is a sustainable resource for fuels and chemicals. In this study, OPEFB was converted to ethanol by an integrative OPEFB conversion process including dilute alkaline pretreatment, cellulolytic enzyme production, separate OPEFB hydrolysis, and cofermentation using a hybrid xylose-fermenting yeast.

View Article and Find Full Text PDF

Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.

View Article and Find Full Text PDF

Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in . Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles.

View Article and Find Full Text PDF

The white-rot fungus Cerrena unicolor BBP6 produced up to 243.4 U mL-1 laccase. A novel laccase isoform LacA was purified; LacA is a homodimer with an apparent molecular mass of 55 kDa and an isoelectric point of 4.

View Article and Find Full Text PDF

Background: Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S.

View Article and Find Full Text PDF

Oil palm empty fruit bunch (OPEFB), contains abundant cellulose and hemicelluloses and can be used as a renewable resource for fuel and chemical production. This study, as the first attempt, aims to convert OPEFB derived sugars to polyhydroxybutyrate (PHB). OPEFB collected from a Malaysia palm oil refinery plant was chemically pretreated and enzymatically hydrolyzed by an in-house prepared cellulase cocktail.

View Article and Find Full Text PDF

Candida athensensis SB18 is potential xylitol producing yeast isolated in Singapore. It has excellent xylose tolerance and is able to produce xylitol in high titer and yield. However, by-products, such as phenolic compounds, derived in lignocellulosic biomass hydrolysate might negatively influence the performance of this strain for xylitol production.

View Article and Find Full Text PDF

Background: Xylose is the second most abundant carbohydrate in the lignocellulosic biomass hydrolysate. The fermentation of xylose is essential for the bioconversion of lignocelluloses to fuels and chemicals. However the wild-type strains of Saccharomyces cerevisiae are unable to utilize xylose.

View Article and Find Full Text PDF

This paper describes the production of xylitol from d-xylose and horticultural waste hemicellulosic hydrolysate by a new strain of Candida athensensis SB18. Strain SB18 completely consumed 250 and 300 g L(-1) D-xylose and successful converted it to xylitol in the respective yield of 0.83 and 0.

View Article and Find Full Text PDF

In this study, we investigated the use of horticultural waste (HW) collected in Singapore as a renewable raw material for bioethanol production. A modified organosolv method using ethanol cooking under mild conditions followed by H(2)O(2) post-treatment was investigated for HW pretreatment. It was found that the addition of acid catalysts in the pretreatment process was not critical and post-treatment using H(2)O(2) was essential for the enhancement of HW digestibility.

View Article and Find Full Text PDF

A new Trichoderma viride stain was isolated from Singapore soil samples. Its mutants were developed by using ethyl methyl sulfonate (EMS) treatment and UV-irradiation followed by a semi-quantitative plate clearing assay on phosphoric-acid-swollen cellulose plates. Mutant EU2-77 proved to be the most promising extracellular cellulase producer among 20 mutants in a screening program performed in shake flask fermentation after plate screening.

View Article and Find Full Text PDF

Horticultural waste collected from a landscape company in Singapore was utilized as the substrate for the production of laccase under solid-state fermentation by Trametes versicolor. The effects of substrate particle size, types of inducers, incubation temperature and time, initial medium pH value, and moisture content on laccase production were investigated. The optimum productivity of laccase (8.

View Article and Find Full Text PDF

Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.

View Article and Find Full Text PDF

Horticultural waste in wood chips form collected from a landscape company in Singapore was utilized as the substrate for the production of cellulase and hemicellulase under solid-state fermentation by Trichoderma reesei RUT-C30. The effects of substrate pretreatment methods, substrate particle size, incubation temperature and time, initial medium pH value, and moisture content on cellulase and hemicellulase production were investigated. Enzyme complex was obtained at the optimal conditions.

View Article and Find Full Text PDF

The degradation pathways of benzoate at high concentration in Pseudomonas putida P8 were directly elucidated through mass spectrometric identification of some key catabolic enzymes. Proteins from P. putida P8 grown on benzoate or succinate were separated using two-dimensional gel electrophoresis.

View Article and Find Full Text PDF

This paper reports the successful isolation and characterization of a new phenol-degrading bacterium, strain EDP3, from activated sludge. Strain EDP3 is a nonmotile, strictly aerobic, Gram-negative, and short-rod or coccobacillary bacterium, which occurs singly, in pairs, or in clusters. 16S rRNA gene sequence analysis revealed that strain EDP3 belonged to the gamma group of Proteobacteria, with a 97.

View Article and Find Full Text PDF

Pseudomonas alcaligenes NCIB 9867 (P25X wild-type) is capable of degrading aromatic hydrocarbons via the gentisate pathway. Biochemical characterization of P25X mutants indicated that it has isofunctional enzymes for the mono- and dioxygenase-catalyzed reactions. One set of the enzymes is constitutive whereas the other is strictly inducible.

View Article and Find Full Text PDF

The surface energetic heterogeneity of the packing media used in perfusion chromatography was investigated based on the liquid-solid adsorption information of phenol. The adsorption isotherms on two perfusive packings, POROS R1 and POROS R2, were measured by stepwise frontal experiments at varying mobile-phase concentrations and temperatures. The isosteric heat of adsorption was calculated from the isotherm data and the adsorption energy distributions (AEDs) were obtained numerically by the expectation maximization (EM) method.

View Article and Find Full Text PDF