Inspired by brain-like spiking computational frameworks, neuromorphic computing-brain-inspired computing for machine intelligence promises to realize artificial intelligence (AI) while reducing the energy requirements of computing platforms. In this work, we show the potential of advanced learnings of butane-1,4-diammonium based low-dimensional Dion-Jacobson hybrid perovskite (BDAPbI) memristor devices in the realm of artificial synapses and neuromorphic computing. Memristors validate Hebbian learning rules with various spike-dependent plasticity within a 10 ± 2 ms time frame, reminiscent of the human brains under flat and bending conditions (∼5 mm radium).
View Article and Find Full Text PDFHardware neural networks with mechanical flexibility are promising next-generation computing systems for smart wearable electronics. Overcoming the challenge of developing a fully synaptic plastic network, we demonstrate a low-operating-voltage PET/ITO/p-MXene/Ag flexible memristor device by controlling the etching of aluminum metal ions in TiCT MXene. The presence of a small fraction of Al ions in partially etched MXene (p-TiCT) significantly suppresses the operating voltage to 1 V compared to 7 V from fully Al etched MXene (f-TiCT)-based devices.
View Article and Find Full Text PDFNeuromorphic platforms are gaining popularity due to their superior efficiency, low power consumption, and adaptable parallel signal processing capabilities, overcoming the limitations of traditional von Neumann architecture. We conduct an in-depth investigation into the factors influencing the resistive switching mechanism in memristor devices utilizing lead iodide (PbI). We establish correlations between device performance and morphological features, unveiling synaptic like behaviour of device making it suitable for range of flexible neuromorphic applications.
View Article and Find Full Text PDFMemristor is assuming prominence due to its exceptionally low power consumption, adaptable, and parallel signal processing capabilities that address the limitations of the von Neumann architecture to meet the growing demand for advanced technologies such as artificial intelligence, Internet of Things (IoTs), and neuromorphic computation. In this work, we demonstrate resistive switching in copper silicate-based hollow tube-forming self-organized membrane structures belonging to the category of chemobrionics or chemical gardens to demonstrate cost-effective and highly efficient memristor devices. The device architecture is configured as ITO/PEDOT:PSS/active layer (copper silicate)/PMMA/Ag, an arrangement that serves to stabilize current-voltage hysteresis and exhibit a low SET voltage ∼0.
View Article and Find Full Text PDFHybrid organic-inorganic metal halide perovskite (HOIP)-based memristors have captured strong attention not only as an emerging candidate for next-generation high-density information storage technology but also for use in healthcare technology and the Internet of Things (IoT) because of their unique properties: low weight, flexibility, compatibility, stretchability, and low power consumption. In this Perspective, we review the recent advances of various aspects of flexible memristors focusing on the selection of the flexible substrates, materials, interfaces, several resistive switching mechanisms, and different methodologies of perovskite growth. The current state of the art of the memristor as an artificial synapse, light-induced resistive switching, and logic gates is comprehensively and systematically reviewed.
View Article and Find Full Text PDFExcitonic effects underpin the fascinating optoelectronic properties of 2D perovskites that are highly favorable for photovoltaics and light-emitting devices. Analogous to switching in transistors, manipulating these excitonic properties in 2D perovskites using coherent phonons could unlock new applications. Presently, a detailed understanding of this underlying mechanism remains modest.
View Article and Find Full Text PDFHeavy water or deuterium oxide (D O) comprises deuterium, a hydrogen isotope twice the mass of hydrogen. Contrary to the disadvantages of deuterated perovskites, such as shorter recombination lifetimes and lower/invariant efficiencies, the serendipitous effect of D O as a beneficial solvent additive for enhancing the power conversion efficiency (PCE) of triple-A cation (cesium (Cs)/methylammonium (MA)/formaminidium (FA)) perovskite solar cells from ≈19.2% (reference) to 20.
View Article and Find Full Text PDFIn recent years, two-dimensional (2D) Ruddlesden-Popper perovskites have emerged as promising candidates for environmentally stable solar cells, highly efficient light-emitting diodes, and resistive memory devices. The remarkable existence of self-assembled quantum well (QW) structures in solution-processed 2D perovskites offers a diverse range of optoelectronic properties, which remain largely unexplored. Here, we experimentally observe ultrafast relaxation of free carriers in 20 ps due to the quantum confinement of free carriers in a self-assembled QW structures that form excitons.
View Article and Find Full Text PDFIon migration, one origin of current-voltage hysteresis, is the bane of halide perovskite optoelectronics. Herein, we leverage this unwelcome trait to unlock new opportunities for resistive switching using layered Ruddlesdsen-Popper perovskites (RPPs) and explicate the underlying mechanisms. The ON/OFF ratio of RPP-based devices is strongly dependent on the layers and peaks at = 5, demonstrating the highest ON/OFF ratio of ∼10 and minimal operation voltage in 1.
View Article and Find Full Text PDFHalide perovskites are promising materials for development in hot carrier (HC) solar cells, where the excess energy of above-bandgap photons is harvested before being wasted as heat to enhance device efficiency. Presently, HC separation and transfer processes at higher-energy states remain poorly understood. Here, we investigate the excited state dynamics in CHNHPbI using pump-push-probe spectroscopy.
View Article and Find Full Text PDFSolution-processed lead iodide (PbI ) governs the charge transport characteristics in the hybrid metal halide perovskites. Besides being a precursor in enhancing the performance of perovskite solar cells, PbI alone offers remarkable optical and ultrasensitive photoresponsive properties that remain largely unexplored. Here, the photophysics and the ultrafast carrier dynamics of the solution processed PbI thin film is probed experimentally.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
Moisture degradation of halide perovskites is the Achilles heel of perovskite solar cells. A surprising revelation in 2014 about the beneficial effects of controlled humidity in enhancing device efficiencies overthrew established paradigms on perovskite solar cell fabrication. Despite the extensive studies on water additives in perovskite solar cell processing that followed, detailed understanding of the role of water from the photophysical perspective remains lacking; specifically, the interplay between the induced morphological effects and the intrinsic recombination pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Ruddlesden-Popper (RP) halide perovskites are the new kids on the block for high-performance perovskite photovoltaics with excellent ambient stability. The layered nature of these perovskites offers an exciting possibility of harnessing their ferroelectric property for photovoltaics. Adjacent polar domains in a ferroelectric material allow the spatial separation of electrons and holes.
View Article and Find Full Text PDFThe original version of this article incorrectly listed the present address of Bo Wu as 'Present address: Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province 510006, China'. This is the author's primary affiliation. This has been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDFHalide perovskites possess enormous potential for various optoelectronic applications. Presently, a clear understanding of the interplay between the lattice and electronic effects is still elusive. Specifically, the weakly absorbing tail states and dual emission from perovskites are not satisfactorily described by existing theories based on the Urbach tail and reabsorption effect.
View Article and Find Full Text PDFMicroRNAs with their unique ability to target hundreds of genes have been highlighted as powerful tools to improve bioprocess behavior of cells. The common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, which requires the introduction and expression of extra genetic material. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate Chinese hamster ovary (CHO) cells which lack the expression of a specific miRNA for the purpose of functional studies.
View Article and Find Full Text PDFThe recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
External electric field treatment (EFT) on P3HT:PCBM bulk heterojunction (BHJ) devices was recently found to be a viable approach for improving the power conversion efficiencies (PCEs) through modulating the blend nanomorphology. However, its effectiveness over the broad family of polymer-fullerene blends remains unclear. Herein, we investigate the effects of external EFT on various polymer-fullerene blends with distinct morphologies stemming from the difference in molecular structure of the polymers (i.
View Article and Find Full Text PDFPrecise morphological control in perovskite films is key to high performance photovoltaic and light emitting devices. However, a clear understanding of the interplay of morphological effects from substrate/perovskite antisolvent treatments on the charge dynamics is still severely lacking. Through detailed ultrafast optical spectroscopy, we correlate the morphology-kinetics relationship in a combination of substrate/film treated samples (i.
View Article and Find Full Text PDFThe addition of a small amount of high boiling point solvent in organic donor/acceptor blends to control their morphology is a viable approach to enhance the power conversion efficiency of bulk heterojunction (BHJ) organic solar cells. Herein, through transient absorption spectroscopy (TAS) correlated with physical characterizations and device studies, we investigate the effects of a family of thiol-based additives (i.e.
View Article and Find Full Text PDF