Publications by authors named "Ankur Baliyan"

DNA origami has emerged as an exciting avenue that provides a versatile two and three-dimensional DNA-based platform for nanomedicine and drug delivery applications. Their incredible programmability, custom synthesis, efficiency, biocompatibility, and physio-chemical nature make DNA origami ideal for biomedical applications. Several recent studies demonstrated the potential of DNA origami for different technological applications, especially in drug delivery.

View Article and Find Full Text PDF

Synchronously detecting multiple Raman spectral signatures in two-dimensional/three-dimensional (2D/3D) hyperspectral Raman analysis is a daunting challenge. The underlying reasons notwithstanding the enormous volume of the data and also the complexities involved in the end-to-end Raman analytics pipeline: baseline removal, cosmic noise elimination, and extraction of trusted spectral signatures and abundance maps. Elimination of cosmic noise is the bottleneck in the entire Raman analytics pipeline.

View Article and Find Full Text PDF

Herein, we present the rapid synthesis of mono-dispersed carbon quantum dots (C-QDs) via a single-step microwave plasma-enhanced decomposition (MPED) process. Highly-crystalline C-QDs were synthesized in a matter of 5 min using the fenugreek seeds as a sustainable carbon source. It is the first report, to the best of our knowledge, where C-QDs were synthesized using MPED via natural carbon precursor.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces an automated analytical framework (AF) that can quickly identify multiple spectral signatures in lithium-ion battery electrodes using hyperspectral Raman data, enhancing quality control and product development.
  • This AF processes the data by removing noise, extracting reliable spectral signatures, labeling them, and training a neural network for accurate classification, requiring little to no human input.
  • The framework also evaluates lithium-ion battery capacity degradation by comparing extracted signatures, making it applicable for real-time analysis in various industrial settings, such as chemical reactions and environmental monitoring.
View Article and Find Full Text PDF

A nanoformulation composed of a ribosome inactivating protein-curcin and a hybrid solid lipid nanovector has been devised against glioblastoma. The structurally distinct nanoparticles were highly compatible to human endothelial and neuronal cells. A sturdy drug release from the particles, recorded upto 72 h, was reflected in the time-dependent toxicity.

View Article and Find Full Text PDF

It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform.

View Article and Find Full Text PDF