Alzheimer's disease (AD) is the most occurring neurodegenerative disorder that destroys learning, memory, and thinking skills. Although the pathophysiology of the disease is least understood, the post-mortem brain of AD patients as well as animal models revealed the part of down regulated Wnt signalling in progression of the disease. The deficit in the Wnt signalling leads to the accumulation of amyloid beta peptides, phosphorylation of tau proteins, and synaptic dysfunctions, which are regarded as the major pathological features of AD.
View Article and Find Full Text PDFDopaminergic neuroprotection is the main interest in designing novel therapeutics against Parkinson's disease (PD). In the process of dopaminergic degeneration, mitochondrial dysfunctions and inflammation are significant. While the existing drugs provide symptomatic relief against PD, a therapy conferring total neuroprotection by targeting multiple degenerative pathways is still lacking.
View Article and Find Full Text PDFAlthough the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials.
View Article and Find Full Text PDFAutism is a complex neurodevelopmental disorder that is evident in early childhood and can persist throughout the entire life. The disease is basically characterized by hurdles in social interaction where the individuals demonstrate repetitive and stereotyped interests or patterns of behavior. A wide number of neuroanatomical studies with autistic patients revealed alterations in brain development which lead to diverse cellular and anatomical processes including atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration.
View Article and Find Full Text PDFLower generation PAMAM dendrimers have an immense potential for drug delivery with lower toxicity, but these dendrimers yet need certain basic ameliorations. In this study, the brain delivery potential of the synthesized PAMAM-Lf (lower generation PAMAM and lactoferrin conjugate) loaded with memantine (MEM) was explored and evaluated in vitro and in vivo in the disease-induced mouse model. The developed nanoscaffolds were characterized for size, zeta potential and in vitro release.
View Article and Find Full Text PDFExploration of dendrimers for effective drug delivery is giving promising results. The present study was designed and performed to explore the dendrimeric (polyamidoamine-lactoferrin; PAMAM-Lf) formulations for the effective rivastigmine (RIV) delivery against the Alzheimer's induced animal model using lactoferrin as the targeting ligand. RIV delivery through PAMAM-Lf conjugates was highly efficient in the Alzheimer's induced animal model.
View Article and Find Full Text PDFMeta-analyses of tea consumption and reduced risk of Parkinson's disease have thrown light in the pathway of exploring beneficial properties of tea components. On the basis of dry mass, a typical black or green tea beverage contains approximately 6% of free amino acids, which impart high quality, taste and distinctive aroma to the tea infusion. L-theanine (chemically known as γ-glutamylethylamide) is a non-proteinogenic amino acid of tea that takes part in the biosynthesis of its polyphenols.
View Article and Find Full Text PDFGarcinol, the principal phytoconstituent of plants belonging to the genus Garcinia, is known for its anti-oxidant as well as anti-inflammatory properties, which can be extended to its possible neuroprotective role. Recent reports disseminate the capacity of garcinol to influence neuronal growth and survival, alter the neurochemical status in brain, as well as regulate memory and cognition. The concomitant neuro-rescue property of garcinol may render it as an effective compound in Parkinson's disease (PD) therapeutics since it is capable of ameliorating the related pathophysiological changes.
View Article and Find Full Text PDFLoss of dopamine containing neurons in the substantia nigra pars compacta of midbrain, and resultant depletion of dopamine in the striatum is the cause of Parkinson's disease (PD), which is associated with motor abnormalities. Replenishment of dopamine by oral supplementation of its precursor, the levodopa (L-DOPA), remains the primary mode of treatment of PD, despite its potential side-effects after prolonged use in patients. To reduce the daily dosing of L-DOPA in patients, inhibitors of dopamine catabolizing enzymes, particularly monoamine oxidase-B (MAO-B), are prescribed.
View Article and Find Full Text PDFElevated levels of cholesterol (hypercholesterolemia) and homocysteine (hyperhomocysteinemia, HHcy) in blood have been linked with the pathology of Parkinson's disease. However, the impact of their combined effect on brain is unknown. The present study aims to investigate the effect of HHcy on dopaminergic neurons in brain of mice with hypercholesterolemia.
View Article and Find Full Text PDF