Publications by authors named "Anku Guha"

Natural selection has driven the convergence toward a selected set of osmolytes, endowing them with the necessary efficiency to manage stress arising from salt diversity. This study combines atomistic simulations and experiments to investigate how two osmolytes, glycine and betaine, individually modulate the Hofmeister ion ordering of alkali metal salts (LiCl, KCl, and CsCl) near a charged silica interface. Both osmolytes are found to prevent salt-induced aggregation of the charged entities, yet their mode and degree of relative modulation depend on their intricate interplay with specific salt cations.

View Article and Find Full Text PDF

The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid.

View Article and Find Full Text PDF
Article Synopsis
  • The study develops a highly efficient hydrogen evolution reaction (HER) catalyst using ultrathin hexagonal boron nitride (hBN) layers enhanced with low amounts of platinum (Pt), crucially maintaining Pt's active state through nitrogen bonding.* -
  • A novel catalyst, hBN_Au_Pt, is created by decorating hBN sheets with gold (Au) nanoparticles and then anchoring Pt, resulting in a high turnover frequency for HER and excellent durability through rigorous testing.* -
  • The findings are supported by density functional theory calculations, which clarify the electronic modifications and catalytic performance of the hBN_Au_Pt system, highlighting its advantages over traditional catalysts, including resistance to carbon corrosion and Pt leaching.*
View Article and Find Full Text PDF

Cryoprotecting agent (CPA)-guided preservation is essential for effective protection of cells from cryoinjuries. However, current cryoprotecting technologies practiced to cryopreserve cells for biomedical applications are met with extreme challenges due to the associated toxicity of CPAs. Because of these limitations of present CPAs, the quest for nontoxic alternatives for useful application in cell-based biomedicines has been attracting growing interest.

View Article and Find Full Text PDF

Herein, with the help of experimental and first-principles density functional theory (DFT)-based studies, we have shown that structural changes in the water coordination in electrolytes having high alkalinity can be a possible reason for the reduced catalytic activity of platinum (Pt) in high pH. Studies with Pt electrodes indicate that electrocatalytic HER activity reduces in terms of high overpotential required, high Tafel slope, and high charge transfer resistances in concentrated aqueous alkaline electrolytes (say 6 M KOH) in comparison to that in low alkaline electrolytes (say 0.1 M KOH), irrespective of the counter cations (Na, K, or Rb) present.

View Article and Find Full Text PDF

To counter the stress of a salt imbalance, the cell often produces low molecular weight osmolytes to resuscitate homeostasis. However, how zwitterionic osmolytes would tune the electrostatic interactions among charged biomacromolecular surfaces under salt stress has eluded mainstream investigations. Here, via combination of molecular simulation and experiment, we demonstrate that a set of zwitterionic osmolytes is able to restore the electrostatic interaction between two negatively charged surfaces that had been masked in the presence of salt.

View Article and Find Full Text PDF

Rational design of a catalyst using earth abundant transition metals that can facilitate the smooth O-O bond formation is crucial for developing efficient water oxidation catalysts. The coordination environment around the metal ion of the catalyst plays a pivotal role in this context. We have chosen dinuclear mixed-valence CoCo complexes of the general formula of [CoCo(LH)(X)(HO)] (X = OAc or Cl) which bear a coordinated water molecule in the primary coordination sphere.

View Article and Find Full Text PDF

The reaction of Co(OAc)2·4H2O with a sterically hindered phosphate ester, LH2, afforded a tetranuclear complex, [CoII(L)(CH3CN)]4·5CH3CN (1) [LH2 = 2,6-(diphenylmethyl)-4-isopropyl-phenyl phosphate]. The molecular structure of 1 reveals that it is a tetranuclear assembly where the Co(ii) centers are present in the alternate corners of a cube. The four Co(ii) centers are held together by four di-anionic [L]2- ligands.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu2jni0rqjr4f40t9kngep59r8bcrrocd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once