Publications by authors named "Anklin C"

In vivo NMR is evolving into an important tool to understand biological processes and environmental responses. Current approaches use flow systems to sustain the organisms with oxygenated water and food (e.g.

View Article and Find Full Text PDF

Configurational and conformational analysis of the biologically relevant natural product artemisinin was conducted using carbon-carbon residual dipolar couplings (D RDCs) at natural abundance. These RDCs were measured through the 2D-INADEQUATE NMR experiment using a sample aligned in a compressed poly (methyl methacrylate) (PMMA) gel swollen in CDCl. Singular value decomposition (SVD) fitting analysis of all carbon-carbon bonds, D RDCs, in relation to the full configuration/conformational space (32 diastereoisomers) of artemisinin, unambiguously identified the correct configuration of artemisinin.

View Article and Find Full Text PDF

NMR spectroscopy has been applied to virtually all sites within proteins and biomolecules; however, the observation of sulfur sites remains very challenging. Recent studies have examined Se as a replacement for sulfur and applied Se NMR in both the solution and solid states. As a spin-1/2 nuclide, Se is attractive as a probe of sulfur sites, and it has a very large chemical shift range (due to a large chemical shift anisotropy), which makes it potentially very sensitive to structural and/or binding interactions as well as dynamics.

View Article and Find Full Text PDF

Multi-resonance NMR experiments are powerful analytical and structural tools. Their conceptualization assumes that RF fields may be combined independently to manipulate spin interactions. However, practical implementation can compromise performance.

View Article and Find Full Text PDF

, which causes tuberculosis (TB), is estimated to infect one-third of the world's population. The overall burden and the emergence of drug-resistant strains of underscore the need for new therapeutic options against this important human pathogen. Our recent work demonstrated the success of natural product discovery in identifying novel compounds with efficacy against Here, we improve on these methods by combining improved isolation and selective screening to identify three new anti-TB compounds: streptomycobactin, kitamycobactin, and amycobactin.

View Article and Find Full Text PDF

We present a method to use long-range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 79 J and J values collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE-3D (computer-assisted 3D structure elucidation) protocol. In addition to the most commonly used J coupling constants, the subset of 32 J values alone showed an excellent degree of configuration selection.

View Article and Find Full Text PDF

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems.

View Article and Find Full Text PDF

We report here the orchestration of molecular ion networking and a set of computationally assisted structural elucidation approaches in the discovery of a new class of pyrroloiminoquinone alkaloids that possess selective bioactivity against pancreatic cancer cell lines. Aleutianamine represents the first in a new class of pyrroloiminoquinone alkaloids possessing a highly strained multibridged ring system, discovered from Latrunculia ( Latrunculia) austini Samaai, Kelly & Gibbons, 2006 (class Demospongiae, order Poecilosclerida, family Latrunculiidae) recovered during a NOAA deep-water exploration of the Aleutian Islands. The molecule was identified with the guidance of mass spectrometry, nuclear magnetic resonance, and molecular ion networking (MoIN) analysis.

View Article and Find Full Text PDF

Mandelalides A-D (1-4) are macrocyclic polyketides known to have an unusual bioactivity profile influenced by compound glycosylation and growth phase of cultured cells. The isolation and characterization of additional natural congeners, mandelalides E-L (5-12), and the supply of synthetic compounds 1 and 12, as well as seco-mandelalide A methyl ester (13), have now facilitated mechanism of action and structure-activity relationship studies. Glycosylated mandelalides are effective inhibitors of aerobic respiration in living cells.

View Article and Find Full Text PDF

We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as summation and quaternion multiplication, rather than slow computations such as matrix exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and therefore has a simple analytical solution.

View Article and Find Full Text PDF

Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation.

View Article and Find Full Text PDF

An enhanced computer-assisted procedure for the determination of the relative configuration of natural products, which starts from the molecular formula and uses a combination of conventional 1D and 2D NMR spectra, and residual dipolar couplings (RDCs), is reported. Having already the data acquired (1D/2D NMR and RDCs), the procedure begins with the determination of the molecular constitution using standard computer-assisted structure elucidation (CASE) and is followed by fully automated determination of relative configuration through RDC analysis. In the case of moderately flexible molecules the simplest data-explaining conformational model is selected by the use of the Akaike information criterion.

View Article and Find Full Text PDF

Deuterium is one of the few stable isotopes that have the capacity to significantly alter a compound's chemical and biological properties. The addition of a single neutron to a protium atom results in the near doubling of its mass, which gives rise to deuterium's characteristic isotope effects. Since the incorporation of deuterium into organic substrates is known to alter enzyme/protein-substrate interactions, we tested the extent to which deuterium enrichment would modify fungal secondary metabolite production.

View Article and Find Full Text PDF

Functional RNA molecules are often very plastic and often undergo changes in base-pairing patterns to achieve alternative secondary and tertiary conformations associated with their roles in multiple events in gene expression. Solution NMR techniques are an excellent tool for the analysis of conformational heterogeneity and dynamic exchange. In this work, we measure the rates associated with spontaneous interconversion between major conformers in folded RNA sequences by use of a (19)F-(19)F EXSY NMR experiment, taking advantage of RNA samples carrying a single 5-(19)F-pyrimidine label.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease.

View Article and Find Full Text PDF

1,1-ADEQUATE and the related long-range 1,n- and n,1-ADEQUATE variants were developed to provide an unequivocal means of establishing (2)J(CH) and the equivalent of (n)J(CH) correlations where n = 3,4. Whereas the 1,1- and 1,n-ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1-variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1-ADEQUATE experiment begins with an HMBC-type (n)J(CH) magnetization transfer, which leads to inherently lower sensitivity than the 1,1- and 1,n-ADEQUATE experiments that begin with a (1)J(CH) transfer.

View Article and Find Full Text PDF

Metabolic mixtures are often analyzed via NMR spectroscopy as it provides a metabolic profile without sample alteration in a noninvasive manner. These mixtures however tend to be very complex and demonstrate considerable spectral overlap resulting in assignments that are sometimes ambiguous given the range of current NMR methods available. De novo molecular identification in these mixtures is generally accomplished using chemical shift information and J-coupling based experiments to determine spin connectivity information, but these techniques fall short when a molecule of interest contains nonrelaying centers.

View Article and Find Full Text PDF

Mandelalides A-D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on submilligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data.

View Article and Find Full Text PDF

BACKGROUND: Under physiological conditions, the melanocortin system is a crucial part of the complex network regulating food intake and energy expenditure. In pathological states, like cachexia, these two parameters are deregulated, i.e.

View Article and Find Full Text PDF

Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme--drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide.

View Article and Find Full Text PDF

Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels.

View Article and Find Full Text PDF

Treatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds.

View Article and Find Full Text PDF

MX-2401 is a semisynthetic calcium-dependent lipopeptide antibiotic (analogue of amphomycin) in preclinical development for the treatment of serious Gram-positive infections. In vitro and in vivo, MX-2401 demonstrates broad-spectrum bactericidal activity against Gram-positive organisms, including antibiotic-resistant strains. The objective of this study was to investigate the mechanism of action of MX-2401 and compare it with that of the lipopeptide daptomycin.

View Article and Find Full Text PDF

In an attempt to determine the cause of repeated fish kills in an estuarine aquaculture facility in Maryland, a toxin with hemolytic, cytotoxic, and ichthyotoxic properties, designated as karlotoxin-2 (KmTx2), was isolated from Karlodinium veneficum. The structure of KmTx2 was elucidated by means of detailed ID and 2D NMR spectra, including 2D INADEQUATE. The relative and absolute configurations of KmTx2 were determined using J-based configuration analysis and comparison of its degradation products with synthetic controls.

View Article and Find Full Text PDF

As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 microg in 8-35 microl volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup.

View Article and Find Full Text PDF