Zika virus (ZIKV) has become a great public health emergency. Its non-structural protein 3 (NS3) is a key enzyme in viral replication and has been considered as a potential therapeutic target. A conformational characterization of ZIKV NS3 is critical for a comprehensive understanding of its molecular interactions and functions.
View Article and Find Full Text PDFDengue- (DENV) and Zika viruses (ZIKV) rely on their non-structural protein 5 (NS5) including a methyl-transferase (MTase) and a RNA-dependent RNA polymerase (RdRp) for capping and synthesis of the viral RNA, and the non-structural protein 3 (NS3) with its protease and helicase domain for polyprotein possessing, unwinding dsRNA proceeding replication, and NTPase/RTPase activities. Accumulation of data for DENV- and ZIKV NS3 and NS5 in solution during recent years provides information about their overall shape, substrate-induced alterations, oligomeric forms and flexibility, with the latter being essential for domain-domain crosstalk. The importance and differences of the linker regions that connect the two domains of NS3 or NS5 are highlighted in particular with respect to the different DENV serotypes (DENV-1 to -4) as well as to the sequence diversities between the DENV and ZIKV proteins.
View Article and Find Full Text PDFThe Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) are of paramount importance to restore redox homeostasis. Recently, the novel phenomenon of swapping of the catalytic domains of EfAhpF was uncovered. Here, we visualized its counterpart EfAhpC (187 residues) from the vancomycin-resistant E.
View Article and Find Full Text PDFDengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution.
View Article and Find Full Text PDFZika virus (ZIKV) has emerged as a pathogen of major health concern. The virus relies on its non-structural protein 5 (NS5) including a methyl-transferase (MTase) and a RNA-dependent RNA polymerase (RdRp) for capping and synthesis of the viral RNA and the nonstructural protein 3 (NS3) with its protease and helicase domain for polyprotein possessing, unwinding dsRNA proceeding replication, and NTPase/RTPase activities. In this study we present for the first time insights into the overall structure of the entire French Polynesia ZIKV NS3 in solution.
View Article and Find Full Text PDFDengue virus (DENV) nonstructural protein 5 (NS5) consists of a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. The cross-talk between these domains occurs via a ten-residue linker. Recent solution studies of DENV NS5 from all four serotypes (DENV-1 to DENV-4) showed that NS5 adopts multiple conformations owing to its flexible linker and that DENV-4 NS5 is more compact and less flexible compared with NS5 from DENV-1 to DENV-3 [Saw et al.
View Article and Find Full Text PDFDifferent forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm.
View Article and Find Full Text PDF