Publications by authors named "Ankit Mahendra"

Immunization based antibody discovery is plagued by the paucity of antigen-specific B cells. Identifying these cells is akin to finding needle in a haystack. Current and emerging technologies while effective, are limited in terms of capturing the antigen-specific repertoire.

View Article and Find Full Text PDF

The in vivo persistence of adoptively transferred T cells is predictive of antitumor response. Identifying functional properties of infused T cells that lead to in vivo persistence and tumor eradication has remained elusive. We profiled CD19-specific chimeric antigen receptor (CAR) T cells as the infusion products used to treat large B cell lymphomas using high-throughput single-cell technologies based on time-lapse imaging microscopy in nanowell grids (TIMING), which integrates killing, cytokine secretion, and transcriptional profiling.

View Article and Find Full Text PDF

The challenge of predicting which patients with breast cancer will develop metastases leads to the overtreatment of patients with benign disease and to the inadequate treatment of aggressive cancers. Here, we report the development and testing of a microfluidic assay that quantifies the abundance and proliferative index of migratory cells in breast cancer specimens, for the assessment of their metastatic propensity and for the rapid screening of potential antimetastatic therapeutics. On the basis of the key roles of cell motility and proliferation in cancer metastasis, the device accurately predicts the metastatic potential of breast cancer cell lines and of patient-derived xenografts.

View Article and Find Full Text PDF

Objective: To obtain the comprehensive transcriptome profile of human citrulline-specific B cells from patients with rheumatoid arthritis (RA).

Methods: Citrulline- and hemagglutinin-specific B cells were sorted by flow cytometry using peptide-streptavidin conjugates from the peripheral blood of RA patients and healthy individuals. The transcriptome profile of the sorted cells was obtained by RNA-sequencing, and expression of key protein molecules was evaluated by aptamer-based SOMAscan assay and flow cytometry.

View Article and Find Full Text PDF

Renal transplant is the treatment of choice for patients with terminal end-stage renal disease. We have previously identified low levels of catalytic IgG as a potential prognosis marker for chronic allograft rejection. The origin and physiopathological relevance of catalytic Abs is not well understood, owing to the fact that catalytic Abs have been studied in relatively small cohorts of patients with rare diseases and/or without systematic follow-up.

View Article and Find Full Text PDF

The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells.

View Article and Find Full Text PDF

Polyreactive antibodies represent a significant fraction of immune repertoires and play an important role in the immune defense and immune homeostasis. Polyreactive B-cell receptors (BCR), however, are frequently expressed by B-cell lymphomas. It was suggested that polyreactive BCR on lymphoma cells might deliver stimulation signals by binding to various endogenous or exogenous antigens, thus promoting the survival of the malignant cells.

View Article and Find Full Text PDF
Article Synopsis
  • Catalytic antibodies are special types of immunoglobulins that can act like enzymes, and low levels of these antibodies in the serum may indicate kidney transplant rejection risk.
  • In a study involving kidney transplant patients, those who received intravenous immunoglobulins (IVIg) showed a significant decrease in catalytic IgG levels within three months of transplant, especially compared to those who did not receive IVIg.
  • This reduction raises concerns about using catalytic antibody levels as a reliable marker for chronic rejection of kidney transplants, as IVIg therapy might mask the true antibody levels related to graft health.
View Article and Find Full Text PDF

Abzymes are immunoglobulins endowed with enzymatic activities. The catalytic activity of an abzyme resides in the variable domain of the antibody, which is constituted by the close spatial arrangement of amino acid residues involved in catalysis. The origin of abzymes is conferred by the innate diversity of the immunoglobulin gene repertoire.

View Article and Find Full Text PDF

Among the numerous questions remaining opened about catalytic antibodies (abzymes), the understanding of the origin of the genes encoding them is of vital significance. An original statistical analysis of genes encoding abzymes is described in the present report. Results suggested that these genes display a high conservation degree with their germline counterpart and a limited number of amino acid changes.

View Article and Find Full Text PDF

Acquired haemophilia A (AHA) is a rare bleeding disorder characterized by the sudden generation of autoantibodies against factor VIII (FVIII) in individuals with no previous history of abnormal haemostasis. Understanding the pathogenesis of this disease has been hampered by the rarity of the patients and the difficulty in obtaining biological material from untreated patients. Still, progress has been made recently in understanding the pathogenesis of AHA.

View Article and Find Full Text PDF

Acquired hemophilia is a rare bleeding disorder characterized by the spontaneous occurrence of inhibitory antibodies against endogenous factor VIII (FVIII). IgG from some patients with acquired hemophilia hydrolyze FVIII. Because of the complex etiology of the disease, no clinical parameter, including the presence of FVIII-hydrolyzing IgG, has been associated with patient's survival or death.

View Article and Find Full Text PDF

Anti-factor VIII (FVIII) inhibitory IgG may arise as alloantibodies to therapeutic FVIII in patients with congenital hemophilia A, or as autoantibodies to endogenous FVIII in individuals with acquired hemophilia. We have described FVIII-hydrolyzing IgG both in hemophilia A patients with anti-FVIII IgG and in acquired hemophilia patients. Here, we compared the properties of proteolytic auto- and allo-antibodies.

View Article and Find Full Text PDF

Objective: A Th1 biased immune response in synovial fluid has been reported in children with polyarticular and extended oligoarticular-type juvenile idiopathic arthritis (JIA). We investigated T cell phenotypes including Th1, Th2, Th17, and Treg with emphasis on Th17 and Treg, in order to differentiate cytokines in the enthesitis-related arthritis (ERA) form of JIA.

Methods: The frequencies of Th1, Th2, Th17, and Treg cells were determined by flow cytometry in peripheral blood (PB) and synovial fluid from patients with ERA and healthy subjects.

View Article and Find Full Text PDF