Publications by authors named "Anket Sharma"

Article Synopsis
  • Seven CcTIR1/AFB genes were identified in the studied plants, characterized by F-box and leucine-rich repeat (LRR) domains, and localized in the nucleus, with a phylogenetic analysis revealing their distribution across four subgroups.
  • The expression of these CcTIR1/AFB genes increased significantly during the grafting process, indicating their importance in this developmental stage, and the Y2H assay showed interactions with specific auxin response
View Article and Find Full Text PDF

Crassulaceae plants are valued for their horticultural, ecological, and economic significance, but their genetic improvement is hindered by the absence of efficient and stable genetic transformation methods. Therefore, the development of a tailored genetic transformation method is crucial for enhancing the progress of the genetic improvement of Crassulaceae plants. The results indicate that, in the transformation experiments conducted on , the K599 strain exhibited the highest transformation efficiency (76.

View Article and Find Full Text PDF

-methyladenosine (mA) in eukaryotes is the most common and widespread internal modification in mRNA. The modification regulates mRNA stability, translation efficiency, and splicing, thereby fine-tuning gene regulation. In plants, mA is dynamic and critical for various growth stages, embryonic development, morphogenesis, flowering, stress response, crop yield, and biomass.

View Article and Find Full Text PDF

Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses.

View Article and Find Full Text PDF

Rice () is a major crop and a main food for a major part of the global population. Rice species have derived from divergent agro-climatic regions, and thus, the local germplasm has a large genetic diversity. This study investigated the relationship between phenotypic and genetic variabilities of yield and yield-associated traits in Aus rice to identify short-duration, high-yielding genotypes.

View Article and Find Full Text PDF

This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations.

View Article and Find Full Text PDF

Winterberry ( (L.) A. Gray) is a recently introduced ornamental tree species in China that has not been closely investigated for its drought resistance.

View Article and Find Full Text PDF

Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources.

View Article and Find Full Text PDF

Auxin is essential for regulating plant growth and development as well as the response of plants to abiotic stresses. AUX/LAX proteins are auxin influx transporters belonging to the amino acid permease family of proton-driven transporters, and are involved in the transport of indole-3-acetic acid (IAA). However, how genes respond to abiotic stresses in Chinese hickory is less studied.

View Article and Find Full Text PDF

Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation.

View Article and Find Full Text PDF

We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells.

View Article and Find Full Text PDF

The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity.

View Article and Find Full Text PDF

Grafting is an effective way to improve Chinese hickory while salt stress has caused great damage to the Chinese hickory industry. Grafting and salt stress have been regarded as the main abiotic stress types for Chinese hickory. However, how Chinese hickory responds to grafting and salt stress is less studied.

View Article and Find Full Text PDF

Background: The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions.

View Article and Find Full Text PDF

The presence of different forms of heavy metals in the earth crust is very primitive and probably associated with the origin of plant life. However, since the beginning of human civilisation, heavy metal use and its contamination to all living systems on earth have significantly increased due to human anthropogenic activities. Heavy metals are nonbiodegradable, which directly or indirectly impact photosynthesis, antioxidant system, mineral nutrition status, phytohormones and amino acid-derived molecules.

View Article and Find Full Text PDF

There is growing evidence that post-transcriptional RNA modifications are highly dynamic and can be used to improve crop production. Although more than 172 unique types of RNA modifications have been identified throughout the kingdom of life, we are yet to leverage upon the understanding to optimize RNA modifications in crops to improve productivity. The contributions of internal mRNA modifications such as N6-methyladenosine (m A) and 5-methylcytosine (m C) methylations to embryonic development, root development, leaf morphogenesis, flowering, fruit ripening and stress response are sufficiently known, but the roles of the two most abundant RNA modifications, pseudouridine (Ψ) and 2'-O-methylation (Nm), in the cell remain unclear due to insufficient advances in high-throughput technologies in plant development.

View Article and Find Full Text PDF

Light acts as a key environmental factor for normal growth and development of plants. Carya cathayensis Sarg. (hickory) faces low light conditions, especially those caused by cloudy or rainy days during the rapid growth period, which has caused adverse effects on its growth.

View Article and Find Full Text PDF

Metalloid contamination in the environment is one of the serious concerns posing threat to our ecosystems. Excess of metalloid concentrations (including antimony, arsenic, boron, selenium etc.) in soil results in their over accumulation in plant tissues, which ultimately causes phytotoxicity and their bio-magnification.

View Article and Find Full Text PDF

Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes.

View Article and Find Full Text PDF
Article Synopsis
  • Chinese hickory (Carya cathayensis) is a significant nut tree in China, facing limitations in industry due to its height and long juvenile phase, addressed by increasing grafting practices.
  • Researchers identified and characterized 23 ABCB genes (CcABCBs) in Chinese hickory and analyzed their expression in relation to auxin and during grafting.
  • Four specific CcABCB genes had variable expression patterns, especially significant changes observed 7 days post-grafting, highlighting their role in regulating auxin homeostasis during the grafting process.
View Article and Find Full Text PDF

Communication among different species across kingdoms occurs through a chain of regulatory molecules that are transferred around cellular boundaries. These molecules are also crucial for defense, virulence, and pathogenesis. In the past, the transport of proteins in long distance communication was observed, but in the present era, the discovery of extracellular vesicles (EVs) has changed our understanding of molecular communication.

View Article and Find Full Text PDF

We evaluated the seedling-stage salt tolerance of a total of 50 indigenous rice genotypes from coastal Tamil Nadu. Using a hydroponic system, we studied the different agronomic characters 14 days after exposure to six different concentrations of saline solution. Shoot and root length as well as plant biomass at seedling stage decreased with increasing salinity.

View Article and Find Full Text PDF