Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the "omics" era of biology, the design of the next generation of tissue equivalents will have to integrate information from single-cell behavior to whole organ architecture.
View Article and Find Full Text PDFHeterologous mono-rhamnolipid production by Pseudomonas putida KT2440 pSynPro8oT_rhlAB using glucose as the single carbon source was characterized in fed-batch bioreactor cultivations. For the described experiments, a defined mineral salt medium was used, and a two phase glucose feeding profile was applied, which yielded a final rhamnolipid concentration of 14.9 g/L.
View Article and Find Full Text PDFHeterologeous production of rhamnolipids in Pseudomonas putida is characterized by advantages of a non-pathogenic host and avoidance of the native quorum sensing regulation in Pseudomonas aeruginosa. Yet, downstream processing is a major problem in rhamnolipid production and increases in complexity at low rhamnolipid titers and when using chemical foam control. This leaves the necessity of a simple concentrating and purification method.
View Article and Find Full Text PDF