We report comparisons between energy-based quantum mechanics/molecular mechanics (QM/MM) and buffered force-based QM/MM simulations in silica. Local quantities-such as density of states, charges, forces, and geometries-calculated with both QM/MM approaches are compared to the results of full QM simulations. We find the length scale over which forces computed using a finite QM region converge to reference values obtained in full quantum-mechanical calculations is ∼10 Å rather than the ∼5 Å previously reported for covalent materials such as silicon.
View Article and Find Full Text PDF