Publications by authors named "Anke L Lameris"

Regulation of the body Mg(2+) balance takes place in the distal convoluted tubule (DCT), where transcellular reabsorption determines the final urinary Mg(2+) excretion. The basolateral Mg(2+) extrusion mechanism in the DCT is still unknown, but recent findings suggest that SLC41 proteins contribute to Mg(2+) extrusion. The aim of this study was, therefore, to characterize the functional role of SLC41A3 in Mg(2+) homeostasis using the Slc41a3 knockout (Slc41a3(-/-)) mouse.

View Article and Find Full Text PDF

Background: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determine whether formative testing using an internet-based application ("app") can positively affect study behaviour as well as study performance of (bio)medical students.

View Article and Find Full Text PDF

Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.

View Article and Find Full Text PDF

Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. Since dietary intake is the only source of minerals for the body, intestinal absorption is essential for normal homeostatic levels. The aim of this study was to characterize the absorption of Ca(2+) as well as Mg(2+) along the gastrointestinal tract at a molecular and functional level.

View Article and Find Full Text PDF

Intellectual disability and seizures are frequently associated with hypomagnesemia and have an important genetic component. However, to find the genetic origin of intellectual disability and seizures often remains challenging because of considerable genetic heterogeneity and clinical variability. In this study, we have identified new mutations in CNNM2 in five families suffering from mental retardation, seizures, and hypomagnesemia.

View Article and Find Full Text PDF

Background: Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by the deletion of 26-28 genes on chromosome 7. Fifteen percent of WBS patients present with hypercalcaemia during infancy, which is generally mild and resolves spontaneously before the age of 4 years. The mechanisms underlying the transient hypercalcaemia in WBS are poorly understood.

View Article and Find Full Text PDF

Background: Claudins, being part of the tight junction protein family, partially determine the integrity and paracellular permeability of the intestinal epithelium. The aim of this study was twofold. First, the authors set out to create an overview of claudin mRNA expression along the proximal-distal axis of the healthy human intestine.

View Article and Find Full Text PDF

TRPV6 is considered the primary protein responsible for transcellular Ca2+ absorption. In vitro studies demonstrate that a negatively charged amino acid (D) within the putative pore region of mouse TRPV6 (position 541) is critical for Ca2+ permeation of the channel. To elucidate the role of TRPV6 in transepithelial Ca2+ transport in vivo, we functionally analyzed a TRPV6D541A/D541A knockin mouse model.

View Article and Find Full Text PDF

Magnesium (Mg2+) balance is tightly regulated by the concerted actions of the intestine, bone and kidneys. This balance can be disturbed by a broad variety of drugs. Diuretics, modulators of the EGFR (epidermal growth factor receptor), proton pump inhibitors, antimicrobials, calcineurin inhibitors and cytostatics may all cause hypomagnesaemia, potentially leading to tetany, seizures and cardiac arrhythmias.

View Article and Find Full Text PDF

Background: Idiopathic infantile hypercalcaemia (IIH) is a rare disease that generally resolves spontaneously between the age of 1 and 3 years. Similar symptoms may occur in patients suffering from Williams-Beuren syndrome (WBS), which is caused by a microdeletion on chromosome 7. Two of the genes, named CLDN3 and CLDN4, located within this region are members of the claudin family that has been shown to be involved in paracellular calcium (Ca(2+)) absorption.

View Article and Find Full Text PDF

The pathogenesis of polycystic liver disease is not well understood. The putative function of the associated proteins, hepatocystin and Sec63p, do not give insight in their role in cystogenesis and their tissue-wide expression does not fit with the liver-specific phenotype of the disease. We designed this study with the specific aim to dissect whether pathways involved in polycystic kidney diseases are also implicated in polycystic liver disease.

View Article and Find Full Text PDF

Autosomal dominant polycystic liver disease (PCLD) is characterized by multiple liver cysts and is caused by mutations in PRKCSH (hepatocystin). Mechanisms of cystogenesis are unknown, but previous studies have shown that hepatocystin is secreted in vitro. The goal of this study was to determine the fate of hepatocystin in vivo.

View Article and Find Full Text PDF