Publications by authors named "Anke Assmann"

Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood.

View Article and Find Full Text PDF

Rationale: Critical illness myopathy (CIM) has no known cause and no treatment. Immobilization and impaired glucose metabolism are implicated.

Objectives: We assessed signal transduction in skeletal muscle of patients at risk for CIM.

View Article and Find Full Text PDF

Background: High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood.

View Article and Find Full Text PDF

The ratio of unsaturated to saturated long-chain fatty acids (LC-FAs) in skeletal muscle has been associated with insulin resistance. Some animal data suggest a modulatory effect of peroxisome proliferator receptor γ (PPARγ) stimulation on stearoyl-CoA desaturase 1 (SCD1) and LC-FA composition in skeletal muscle, but human data are rare. We here investigate whether treatment with a PPARγ agonist affects myocellular SCD1 expression and modulates the intramyocellular fatty acid profile in individuals with impaired glucose tolerance.

View Article and Find Full Text PDF

Hyperglycemia and insulin resistance are frequently observed during critical illness. The underlying pathophysiology is not yet fully understood, although hyperglycemia predicts post-surgical morbidity and mortality. Apparently perioperative insulin resistance has a complex pathophysiology and tissue-specific differences have to be considered.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF-21), a novel metabolic factor in obesity and fasting metabolism, has been shown to be regulated by supraphysiological levels of free fatty acids (FFAs) under hyperinsulinemic conditions. Interestingly, it is still unclear whether the observed effects of FFAs on FGF-21 are relevant under physiological conditions, and the relative functions of FFAs and insulin within this context also need to be determined. Fourteen healthy men were studied in a randomized controlled crossover trial (RCT) using lipid heparin infusion (LHI) at a dose inducing physiological elevations of FFAs vs.

View Article and Find Full Text PDF

Fibroblast growth factor-21 (FGF-21) has been proposed as a novel metabolic regulator, and animal experiments suggested that FGF-21 may affect energy balance. In humans, FGF-21 was correlated with obesity. Until now, no data exist regarding the relationship of FGF-21 and weight reduction in humans.

View Article and Find Full Text PDF

Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in beta-cells that included glucokinase (GK), and the pro-apoptotic protein, BAD(S). Mitochondria isolated from beta-cells derived from beta-cell specific insulin receptor knockout (betaIRKO) mice exhibited reduced BAD(S), GK and protein kinase A in the complex, and attenuated function.

View Article and Find Full Text PDF

Introduction: In several fields of surgery, the treatment of complicated tissue defects is an unsolved clinical problem. In particular, the use of tissue scaffolds has been limited by poor revascularization and integration. In this study, we developed a polymer, poly-N-acetyl-glucosamine (sNAG), with bioactive properties that may be useful to overcome these limitations.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor I (IGF-I) are ubiquitous hormones that regulate growth and metabolism of most mammalian cells, including pancreatic beta-cells. In addition to being an insulin secretagogue, glucose regulates proliferation and survival of beta-cells. However, it is unclear whether the latter effects of glucose occur secondary to autocrine activation of insulin signaling proteins by secreted insulin.

View Article and Find Full Text PDF

Type 1 and type 2 diabetes mellitus together are predicted to affect over 300 million people worldwide by the year 2020. A relative or absolute paucity of functional β-cells is a central feature of both types of disease, and identifying the pathways that mediate the embryonic origin of new β-cells and mechanisms that underlie the proliferation of existing β-cells are major efforts in the fields of developmental and islet biology. A poor secretory response of existing β-cells to nutrients and hormones and the defects in hormone processing also contribute to the hyperglycemia observed in type 2 diabetes and has prompted studies aimed at enhancing β-cell function.

View Article and Find Full Text PDF

The urokinase plasminogen activator system with its receptor uPAR contributes to the migratory potential of macrophages, a key event in atherosclerosis. We here investigated whether free fatty acids (FFA) modify the expression for uPAR in the PMA-differentiated human monocyte/macrophage-like cell line U937. Two hundred micromolar palmitate induced a threefold increase of the uPAR mRNA expression.

View Article and Find Full Text PDF

Objective: Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) by a dominant-negative transgene (l-SACC1 mice) impaired insulin clearance, caused insulin resistance, and increased hepatic lipogenesis. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we characterized the metabolic phenotype of mice with null mutation of the Ceacam1 gene (Cc1(-/-)).

Research Design And Methods: Mice were originally generated on a mixed C57BL/6x129sv genetic background and then backcrossed 12 times onto the C57BL/6 background.

View Article and Find Full Text PDF

An appropriate beta cell mass is pivotal for the maintenance of glucose homeostasis. Both insulin and IGF-1 are important in regulation of beta cell growth and function (reviewed in ref. 2).

View Article and Find Full Text PDF