Energy level alignment at metal/organic semiconductors (OSCs) interface governs electronic processes in organic electronics devices, making its precise determination essential for understanding carrier transport behaviors and optimizing device performance. However, it is proven that accurately characterizing the energy barrier at metal/OSC interface under operational conditions remains challenging due to the technical limitations of traditional methods. Herein, through integrating highly-improved device constructions with an ingenious derivative-assisted data processing method, this study demonstrates an in-device ballistic-electron-emission spectroscopy using hot-electron transistors to accurately characterize the energy barrier at metal/OSC interface under in-operando conditions.
View Article and Find Full Text PDFIntramolecular noncovalent interaction (INCI), a crucial strategy for effectively enhancing molecular planarity and extending π-electron delocalization in organic semiconductors (OSCs), has played an increasingly important role in optoelectronic applications. However, though the INCI formation is regularly considered to improve the device performance by literature, there is no feasible approach to directly and reliably characterizing its formation in practical-OSC films thus far. Here in this study, by theoretical analysis and calculation, the generation of INCIs in OSCs is found, normally consisting of relatively heavy elements, such as O···Se, O···S, N···S interactions, etc.
View Article and Find Full Text PDFOrganic semiconductors (OSCs) are featured by weak spin-orbit coupling due to their light chemical element composition, which enables them to maintain spin orientation for a long spin lifetime and show significant potential in room-temperature spin transport. Carrier mobility and spin lifetime are the two main factors of the spin transport performance of OSCs, however, their ambiguous mechanisms with molecular structure make the development of spintronic materials really stagnant. Herein, the effects of halogen substitution in bay-annulated indigo-based polymers on carrier mobility and spin relaxation have been systematically investigated.
View Article and Find Full Text PDFOrganic light-emitting transistors (OLETs) have garnered considerable attention from academy and industry due to their potential applications in next-generation display technologies, multifunctional devices, and organic electrically pumped lasers. However, overcoming the trade-offs among power consumption, external quantum efficiency (EQE), and uniform area emission remains a long-standing issue for OLETs. Herein, a van der Waals multilayer heterojunction methodology is proposed to enhance the layer-to-layer interfacial interaction and contact, resulting in better dipole shielding, carrier transport, exciton recombination, and current density distribution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF).
View Article and Find Full Text PDF