As the regenerative mechanisms of biological organisms, self-healing provides useful functions for soft electronics or associated systems. However, there have been few examples of soft electronics where all components have self-healing properties while also ensuring compatibility between components to achieve multifunctional and resilient bio-integrated electronics. Here, we introduce a stretchable, biodegradable, self-healing conductor constructed by combination of two layers: (i) synthetic self-healing elastomer and (ii) self-healing conductive composite with additives.
View Article and Find Full Text PDFUnderstanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects.
View Article and Find Full Text PDFAlthough increasing efforts have been devoted to the development of non-invasive wearable or stretchable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by simple and facile laser treatment for detecting biomarkers such as glucose in sweat. The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.
View Article and Find Full Text PDFWearable electronics with applications in healthcare, human-machine interfaces, and robotics often explore complex manufacturing procedures and are not disposable. Although the use of conductive pencil patterns on cellulose paper provides inexpensive, disposable sensors, they have limited stretchability and are easily affected by variations in the ambient environment. This work presents the combination of pencil-on-paper with the hydrophobic fumed SiO (Hf-SiO) coating and stretchable kirigami structures from laser cutting to prepare a superhydrophobic, stretchable pencil-on-paper multifunctional sensing platform.
View Article and Find Full Text PDFDespite the extensive developments of flexible capacitive pressure sensors, it is still elusive to simultaneously achieve excellent linearity over a broad pressure range, high sensitivity, and ultrahigh pressure resolution under large pressure preloads. Here, we present a programmable fabrication method for microstructures to integrate an ultrathin ionic layer. The resulting optimized sensor exhibits a sensitivity of 33.
View Article and Find Full Text PDFUltrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process.
View Article and Find Full Text PDFTransient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to "dissolve at will" after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies (, electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics.
View Article and Find Full Text PDFMonitoring nitrogen utilization efficiency and soil temperature in agricultural systems for timely intervention is essential for crop health with reduced environmental pollution. Herein, this work presents a high-performance multi-parameter sensor based on vanadium oxide (VO )-doped laser-induced graphene (LIG) foam to completely decouple nitrogen oxides (NO ) and temperature. The highly porous 3D VO -doped LIG foam composite is readily obtained by laser scribing vanadium sulfide (V S )-doped block copolymer and phenolic resin self-assembled films.
View Article and Find Full Text PDFAlthough flexible humidity sensors are essential for human health monitoring, it is still challenging to achieve high sensitivity and easy disposal with simple, low-cost fabrication processes. This study presents the design and fabrication of highly reliable hand-drawn interdigital electrodes from pencil-on-paper treated with NaCl solution for highly sensitive hydration sensors working over a wide range of relative humidity (RH) levels from 5.6% to 90%.
View Article and Find Full Text PDF