Publications by authors named "Anjuli M Timmer"

Group A Streptococcus (GAS) causes a wide range of human infections, ranging from simple pharyngitis to life-threatening necrotizing fasciitis and toxic shock syndrome. A globally disseminated clone of M1T1 GAS has been associated with an increase in severe, invasive GAS infections in recent decades. The secreted GAS pore-forming toxin streptolysin O (SLO), which induces eukaryotic cell lysis in a cholesterol-dependent manner, is highly upregulated in the GAS M1T1 clone during bloodstream dissemination.

View Article and Find Full Text PDF

The role of sirtuin-1 (SIRT1) in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a human-specific bacterial pathogen responsible for serious morbidity and mortality worldwide. The hyaluronic acid (HA) capsule of GAS is a major virulence factor, contributing to bloodstream survival through resistance to neutrophil and antimicrobial peptide killing and to in vivo pathogenicity. Capsule biosynthesis has been exclusively attributed to the ubiquitous hasABC hyaluronan synthase operon, which is highly conserved across GAS serotypes.

View Article and Find Full Text PDF

Detection of microbial constituents by membrane associated and cytoplasmic pattern recognition receptors is the essence of innate immunity, leading to activation of protective host responses. However, it is still unclear how immune cells specifically respond to pathogenic bacteria. Using virulent and nonvirulent strains of Bacillus anthracis, we have shown that secretion of ATP by infected macrophages and the sequential activation of the P2X7 purinergic receptor and nucleotide binding oligomerization domain (NOD)-like receptors are critical for IL-1-dependent host protection from virulent B.

View Article and Find Full Text PDF

Transcription factor NF-κB and its activating kinase IKKβ are associated with inflammation and are believed to be critical for innate immunity. Despite the likelihood of immune suppression, pharmacological blockade of IKKβ-NF-κB has been considered as a therapeutic strategy. However, we found neutrophilia in mice with inducible deletion of IKKβ (Ikkβ(Δ) mice).

View Article and Find Full Text PDF

Background: The recent resurgence of invasive group A streptococcal disease has been paralleled by the emergence of the M1T1 clone. Recently, invasive disease initiation has been linked to mutations in the covR/S 2-component regulator. We investigated whether a fitness cost is associated with the covS mutation that counterbalances hypervirulence.

View Article and Find Full Text PDF

Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a leading human bacterial pathogen capable of producing invasive infections even in previously healthy individuals. As frontline components of host innate defense, macrophages play a key role in control and clearance of GAS infections. We find GAS induces rapid, dose-dependent apoptosis of primary and cultured macrophages and neutrophils.

View Article and Find Full Text PDF

Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation.

View Article and Find Full Text PDF

Macrophage activation relies on complex intracellular signaling processes that integrate the need for rapid inflammatory responses to pathogens with the need to resolve inflammation without permanent harm to normal tissues. Patterns of aberrant macrophage activation characterize and sustain disorders of chronic inflammation, infection, and cancer. New studies now show a role for the NF-kappaB activator IKKbeta in promoting an alternative, immunosuppressive pattern of macrophage activation, which limits the cell's tumoricidal and bactericidal capacities.

View Article and Find Full Text PDF

Streptococcus iniae is a major fish pathogen producing invasive infections that result in economic losses in aquaculture. Development of in vitro models of S. iniae virulence may provide insight to the pathogenesis of infection in vivo.

View Article and Find Full Text PDF

Serum opacity factor (SOF) is a unique multifunctional virulence determinant expressed at the surface of Streptococcus pyogenes and has been shown to elicit protective immunity against GAS infection in a murine challenge model. SOF consists of two distinct domains with different binding capacities: an N-terminal domain that binds apolipoprotein AI and a C-terminal repeat domain that binds fibronectin and fibrinogen. The capacity of SOF to opacify serum by disrupting the structure of high density lipoproteins may preclude its use as a vaccine antigen in humans.

View Article and Find Full Text PDF

Antibiotics are designed to support host defense in controlling infection. Here we describe a paradoxical inhibitory effect of bacteriostatic antibiotics on key mediators of mammalian innate immunity. When growth of species including Escherichia coli and Staphylococcus aureus is suppressed by chloramphenicol or erythromycin, the susceptibility of the bacteria to cathelicidin antimicrobial peptides or serum complement was markedly diminished.

View Article and Find Full Text PDF

The TGFbeta family member Nodal has been implicated in heart induction through misexpression of a dominant negative version of the type I Nodal receptor (Alk4) and targeted deletion of the co-receptor Cripto in murine ESCs and mouse embryos; however, whether Nodal acts directly or indirectly to induce heart tissue or interacts with other signaling molecules or pathways remained unclear. Here we present Xenopus embryological studies demonstrating an unforeseen role for the DAN family protein Cerberus within presumptive foregut endoderm as essential for differentiation of cardiac mesoderm in response to Nodal. Ectopic activation of Nodal signaling in non-cardiogenic ventroposterior mesendoderm, either by misexpression of the Nodal homologue XNr1 together with Cripto or by a constitutively active Alk4 (caAlk4), induced both cardiac markers and Cerberus.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a leading human pathogen associated with a wide spectrum of mucosal and invasive infections. GAS expresses a large number of virulence determinants whose expression is under the control of several transcriptional regulatory networks. Here we performed the first mutational analysis of a genetic locus immediately upstream of the streptolysin S biosynthetic operon in several GAS genome sequences, including that of the M1T1 serotype, the leading isolates associated with serious invasive disease.

View Article and Find Full Text PDF

Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells.

View Article and Find Full Text PDF