Publications by authors named "Anju Preet"

Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity.

View Article and Find Full Text PDF

Context: Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer.

Objective: The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators.

Design: Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17β-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α.

View Article and Find Full Text PDF

Mutations of the p53 gene hallmark many human cancers. Several p53 mutant proteins acquire the capability to promote cancer progression and metastasis, a phenomenon defined as Gain of Oncogenic Function (GOF). The downstream targets by which GOF p53 mutants perturb cellular programs relevant to oncogenesis are only partially known.

View Article and Find Full Text PDF

One fundamental feature of mutant forms of p53 consists in their accumulation at high levels in tumors. At least in the case of neomorphic p53 mutations, which acquire oncogenic activity, stabilization is a driving force for tumor progression. It is well documented that p53 mutants are resistant to proteasome-dependent degradation compared with wild-type p53, but the exact identity of the pathways that affect mutant p53 stability is still debated.

View Article and Find Full Text PDF

The majority of human tumors express mutant forms of p53 at high levels, promoting gain of oncogenic functions and correlating with disease progression, resistance to therapy and unfavorable prognosis. p53 mutant accumulation in tumors is attributed to the ability to evade degradation by the proteasome, the only currently recognized machinery for p53 disruption. We report here that glucose restriction (GR) induces p53 mutant deacetylation, routing it for degradation via autophagy.

View Article and Find Full Text PDF

Dysregulation of the pathways that preserve mitochondrial integrity hallmarks many human diseases including diabetes, neurodegeration, aging and cancer. The mitochondrial citrate transporter gene, SLC25A1 or CIC, maps on chromosome 22q11.21, a region amplified in some tumors and deleted in developmental disorders known as velo-cardio-facial- and DiGeorge syndromes.

View Article and Find Full Text PDF

Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood.

View Article and Find Full Text PDF

microRNAs (miRs) modulate the expression levels of mRNAs and proteins and can thus contribute to cancer initiation and progression. In addition to their intracelluar function, miRs are released from cells and shed into the circulation. We postulated that circulating miRs could provide insight into pathways altered during cancer progression and may indicate responses to treatment.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC. We observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients.

View Article and Find Full Text PDF

Background: MLL2, an epigenetic regulator in mammalian cells, mediates histone 3 lysine 4 tri-methylation (H3K4me3) through the formation of a multiprotein complex. MLL2 shares a high degree of structural similarity with MLL, which is frequently disrupted in leukemias via chromosomal translocations. However, this structural similarity is not accompanied by functional equivalence.

View Article and Find Full Text PDF

Cannabinoids have been reported to possess antitumorogenic activity. Not much is known, however, about the effects and mechanism of action of synthetic nonpsychotic cannabinoids on breast cancer growth and metastasis. We have shown that the cannabinoid receptors CB1 and CB2 are overexpressed in primary human breast tumors compared with normal breast tissue.

View Article and Find Full Text PDF

SLIT-2 is considered as a candidate tumor suppressor gene, because it is frequently inactivated in various cancers due to hypermethylation of its promoter region and allelic loss. However, the exact mechanism of its tumor-suppressive effect has not been elucidated. Here, we observed that Slit-2-overexpressing breast cancer cells exhibited decreased proliferation and migration capabilities compared with control cells under in vitro conditions.

View Article and Find Full Text PDF

Trigonella foenum graecum seed powder (TSP) and Sodium Orthovanadate (SOV) have been shown to demonstrate antidiabetic effects by stabilizing glucose homeostasis and carbohydrate metabolism in experimental type-1 diabetes. However their efficacy in controlling histopathological and biochemical abnormalities in ocular tissues associated with diabetic retinopathy is not known. The purpose of this study was to investigate the comparative efficacy of individual as well as combination therapy of TSP and SOV in 8 weeks diabetic rat lens and retina.

View Article and Find Full Text PDF

Cannabinoids have been shown to influence the immune system. However, their immunomodulatory effects have not been extensively studied. In this investigation, we have observed that both primary and Jurkat T cells express a functional cannabinoid receptor 2 (CB(2)).

View Article and Find Full Text PDF

Vanadium has been reported to have broad pharmacological activity both in vitro and in vivo. Vanadium compound, sodium orthovanadate, Na3VO4, is well known for its hypoglycaemic effects. However, Na3VO4 exerts these effects at relatively high doses (0.

View Article and Find Full Text PDF

Salmonella vaccine strains have been previously reported to evoke immune response against heterologous antigen cloned in the flagellin gene. A non-toxic cholera toxin subunit B epitope was selected by using computer-based program and genetically fused in single and double copy in Salmonella typhimurium flagellin gene. The chimeric flagellin functioned normally as demonstrated by motility assay.

View Article and Find Full Text PDF

Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination with Trigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines.

View Article and Find Full Text PDF

The reticulocytes and the ageing red blood cells (RBCs) namely young (Y), middle-aged (M) and old RBCs (O) of female Wistar rats from different groups such as control animals (C), controls treated with vanadate (C + V), alloxan-induced diabetic (D), diabetic-treated with insulin (D + I) and vanadate (D + V), were fractionated on a percoll/BSA gradient. The following enzymes were measured - hexokinase (HK), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione-s-transferase (GST), alanine aminotransferase (AlaAT), aspartate aminotransferase (AsAT) and arginase in the hemolysates of all the RBCs fractions. Decreases in the activity of HK and AsAT by about 70%, arginase and GSH-Px by 30% in old RBCs were observed in comparison to reticulocytes of control animals.

View Article and Find Full Text PDF